Inorganic Chemistry
3) (a) Ascenzi, P.; De Marinis, E.; Coletta, M.; Visca, P. Biochem.
Biophys. Res. Commun. 2008, 373, 197. (b) De Marinis, E.; Casella, L.;
Ciaccio, C.; Coletta, M.; Visca, P.; Ascenzi, P. IUBMB Life 2009, 61, 62.
ARTICLE
(
(23) Holleman, A. F.; Wiberg, E.; Wiberg, N. Inorganic Chemistry,
101st ed.; Walter de Gruyter: Berlin, Germany, 2001.
(24) Hagen, K. S. Inorg. Chem. 2000, 39, 5867.
(4) (a) Bruckdorfer, K. R.; Dee, G.; Jacobs, M.; Rice-Evans, C. A.
(25) Arnold, J.; Hoffman, C. G.; Dawson, D. Y.; Hollander, F. J.
Biochem. Soc. Trans. 1990, 18, 285. (b) Dee, G.; Rice-Evans, C.;
Obeyesekera, S.; Meraji, S.; Jacobs, M.; Bruckdorfer, K. R. FEBS Lett.
Organometallics 1993, 12, 3645.
(26) Royal, G.; Dahaoui-Gindrey, V.; Dahaoui, S.; Tabard, A.;
Guilard, R.; Pullumbi, P.; Lecomte, C. Eur. J. Org. Chem. 1998, 1971.
(27) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski,
M. R.; Stubna, A.; M €u nck, E.; Nam, W.; Que, L., Jr. Science 2003,
299, 1037.
(28) Saltzman, H.; Sharefkin, J. G. In Organic Syntheses; Wiley &
Sons: New York, 1973; Collect. Vol. V, pp 658ꢀ659.
(29) McQuaid, K. M.; Pettus, T. R. R. Synlett 2004, 2403.
(30) Young, C. L. IUPAC Solubility Data Ser. 1981, 8, 336.
(31) Rohde, J.-U.; Que, L., Jr. Angew. Chem., Int. Ed. 2005, 44, 2255.
(32) Hodges, K. D.; Wollmann, R. G.; Barefield, E. K.; Hendrickson,
D. N. Inorg. Chem. 1977, 16, 2746.
1
991, 294, 38. (c) Gorbunov, N. V.; Osipov, A. N.; Day, B. W.;
Zayas-Rivera, B.; Kagan, V. E.; Elsayed, N. M. Biochemistry 1995,
4, 6689. (d) Osipov, A. N.; Gorbunov, N. V.; Day, B. W.; Elsayed,
N. M.; Kagan, V. E. Methods Enzymol. 1996, 268, 193.
5) Glover, R. E.; Koshkin, V.; Dunford, H. B.; Mason, R. P. Nitric
Oxide 1999, 3, 439.
6) (a) Abu-Soud, H. M.; Hazen, S. L. J. Biol. Chem. 2000, 275, 5425.
b) Abu-Soud, H. M.; Hazen, S. L. J. Biol. Chem. 2000, 275, 37524. (c)
3
(
(
(
Abu-Soud, H. M.; Khassawneh, M. Y.; Sohn, J.-T.; Murray, P.; Haxhiu,
M. A.; Hazen, S. L. Biochemistry 2001, 40, 11866.
(
7) Brunelli, L.; Yermilov, V.; Beckman, J. S. Free Radical Biol. Med.
001, 30, 709.
8) Borisov, V. B.; Forte, E.; Sarti, P.; Brunori, M.; Konstantinov,
A. A.; Giuffr ꢀe , A. FEBS Lett. 2006, 580, 4823.
9) (a) Wick, P. K.; Kissner, R.; Koppenol, W. H. Helv. Chim. Acta
000, 83, 748. (b) Wick, P. K.; Kissner, R.; Koppenol, W. H. Helv. Chim.
Acta 2001, 84, 3057. (c) Herold, S.; Koppenol, W. H. Coord. Chem. Rev.
ꢀ
ꢀ
2
(33) We have also probed other sources of NO2 . First, NO2 has
(
been reported to be commonly present in aqueous NO solu-
1
0,11,34,35
36
tions
due to oxidation of NO by trace amounts of O
2
.
Here,
(
solutions of NO in MeNO
2
ꢀMeOH were found to contain less than
37
ꢀ
2
0.1 mM NO2 . Second, a number of transition metal complexes are
ꢀ
known to produce NO
2
by disproportionation of NO. When
2
005, 249, 499.
10) Nemes, A.; Pestovsky, O.; Bakac, A. J. Am. Chem. Soc. 2002,
24, 421.
solutions of 1ꢀOAc, which was identified as a product of the reaction
(
of 2ꢀOAc with NO, were treated with an excess of NO, we found ca. 0.3
ꢀ
ꢀ
2
1
equiv of NO (with respect to Fe). Thus, these two sources of NO
2
ꢀ
(11) Pestovsky, O.; Bakac, A. J. Am. Chem. Soc. 2002, 124, 1698.
12) (a) Maiti, D.; Lee, D.-H.; Narducci Sarjeant, A. A.; Pau,
play a minor role in the formation of NO
2
here but likely are res-
ꢀ
(
ponsible for the observation of NO
2
in excess of 1 equiv (cf. the
M. Y. M.; Solomon, E. I.; Gaoutchenova, K.; Sundermeyer, J.; Karlin,
K. D. J. Am. Chem. Soc. 2008, 130, 6700. (b) Schopfer, M. P.; Mondal, B.;
Lee, D.-H.; Sarjeant, A. A. N.; Karlin, K. D. J. Am. Chem. Soc. 2009,
Experimental Section for details).
(34) Wolak, M.; Stochel, G.; Hamza, M.; van Eldik, R. Inorg. Chem.
2000, 39, 2018.
1
31, 11304. (c) Park, G. Y.; Deepalatha, S.; Puiu, S. C.; Lee, D.-H.;
(35) (a) Fernandez, B. O.; Lorkovic, I. M.; Ford, P. C. Inorg. Chem.
2003, 42, 2. (b) Fernandez, B. O.; Lorkovic, I. M.; Ford, P. C. Inorg.
Chem. 2004, 43, 5393.
Mondal, B.; Narducci Sarjeant, A. A.; del Rio, D.; Pau, M. Y. M.;
Solomon, E. I.; Karlin, K. D. J. Biol. Inorg. Chem. 2009, 14, 1301.
(
13) (a) De Leo, M.; Ford, P. C. J. Am. Chem. Soc. 1999, 121, 1980.
b) DeLeo, M. A.; Ford, P. C. Coord. Chem. Rev. 2000, 208, 47.
14) Sharpe, M. A.; Ollosson, R.; Stewart, V. C.; Clark, J. B. Biochem.
J. 2002, 366, 97.
15) Abbreviations: [14]aneN
or cyclam; H ppIX, 7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-
porphine-2,18-dipropanoic acid or protoporphyrin IX; H tpfpp, 5,10,15,
(36) (a) Awad, H. H.; Stanbury, D. M. Int. J. Chem. Kinet. 1993,
25, 375. (b) Ford, P. C.; Wink, D. A.; Stanbury, D. M. FEBS Lett. 1993,
326, 1.
(37) (a) Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1998, 120, 9034.
(b) Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504.
(c) Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993.
(38) Hodges, K. D.; Wollmann, R. G.; Kessel, S. L.; Hendrickson,
D. N.; Van Derveer, D. G.; Barefield, E. K. J. Am. Chem. Soc. 1979,
101, 906.
(39) (a) Gwost, D.; Caulton, K. G. J. Chem. Soc., Chem. Commun.
1973, 64. (b) Gwost, D.; Caulton, K. G. Inorg. Chem. 1973, 12, 2095.
(c) Wayland, B. B.; Olson, L. W. J. Chem. Soc., Chem. Commun. 1973,
897. (d) Wayland, B. B.; Olson, L. W. J. Am. Chem. Soc. 1974, 96, 6037.
(40) Tran, D.; Skelton, B. W.; White, A. H.; Laverman, L. E.; Ford,
P. C. Inorg. Chem. 1998, 37, 2505.
(
(
(
4
, 1,4,8,11-tetraazacyclotetradecane
2
2
2
0-tetrakis(2,3,4,5,6-pentafluorophenyl)-21H,23H-porphine; TfOH
=CF SO H), trifluoromethanesulfonic or triflic acid; tmc, 1,4,8,
1-tetramethyl-1,4,8,11-tetraazacyclotetradecane.
16) (a) Crestoni, M. E.; Fornarini, S. Inorg. Chem. 2005, 44, 5379.
b) Crestoni, M. E.; Fornarini, S. Inorg. Chem. 2007, 46, 9018. (c)
(
3
3
1
(
(
Chiavarino, B.; Cipollini, R.; Crestoni, M. E.; Fornarini, S.; Lanucara, F.;
Lapi, A. J. Am. Chem. Soc. 2008, 130, 3208.
(
17) (a) Lei, J.; Trofimova, N. S.; Ikeda, O. Chem. Lett. 2003, 32, 610.
b) Lei, J.; Ju, H.; Ikeda, O. J. Electroanal. Chem. 2004, 567, 331. (c)
Trofimova, N. S.; Safronov, A. Y.; Ikeda, O. Electrochim. Acta 2005,
0, 4637.
18) (a) Suslick, K. S.; Watson, R. A. Inorg. Chem. 1991, 30, 912. (b)
Suslick, K. S.; Bautista, J. F.; Watson, R. A. J. Am. Chem. Soc. 1991,
13, 6111. (c) Yamaji, M.; Hama, Y.; Miyazaki, Y.; Hoshino, M. Inorg.
Chem. 1992, 31, 932.
19) Crestoni, M. E.; Fornarini, S.; Lanucara, F.; Warren, J. J.; Mayer,
J. M. J. Am. Chem. Soc. 2010, 132, 4336.
20) (a) McCarthy, M. R.; Crevier, T. J.; Bennett, B.; Dehestani, A.;
(
(41) Ford, P. C.; Fernandez, B. O.; Lim, M. D. Chem. Rev. 2005,
105, 2439.
(42) Man, W.-L.; Lam, W. W. Y.; Wong, W.-Y.; Lau, T.-C. J. Am.
5
(
Chem. Soc. 2006, 128, 14669.
1
(
(
Mayer, J. M. J. Am. Chem. Soc. 2000, 122, 12391. (b) Walstrom, A.; Pink,
M.; Fan, H.; Tomaszewski, J.; Caulton, K. G. Inorg. Chem. 2007, 46,
7
704.
21) (a) Nam, W. Acc. Chem. Res. 2007, 40, 522. (b) Lee, Y.-M.;
Kotani, H.; Suenobu, T.; Nam, W.; Fukuzumi, S. J. Am. Chem. Soc. 2008,
30, 434. (c) Fukuzumi, S.; Kotani, H.; Lee, Y.-M.; Nam, W. J. Am. Chem.
Soc. 2008, 130, 15134.
22) Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemi-
cals, 5th ed.; Butterworth-Heinemann: Oxford, U.K., 2003.
(
1
(
5
289
dx.doi.org/10.1021/ic2007205 |Inorg. Chem. 2011, 50, 5283–5289