Organic Letters
Letter
Scheme 4. Preliminary Mechanism Study
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and NMR spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
isopropyl-1,3,4-thiadiazoles by the reaction of 15N-labeled
isobutanal N-tosyl hydrazone, benzaldehyde N-tosyl hydrazone,
and sublimed sulfur (Scheme 4, eq 2). This result confirmed
the selective denitrogenation took place in benzaldehyde N-
tosyl hydrazone rather than isobutanal N-tosyl hydrazone.
Moreover, 1,4-diphenylformalazine 6 was subjected to the
standard procedure and no 1,3,4-thiadiazoles was detected,
ruling out the possibility of benzaldehyde 2-butylidenehydra-
zone as the intermediate (Scheme 4, eq 3).
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(Nos. 21272028 and 21572025), “Innovation & Entrepreneur-
ship Talents” Introduction Plan of Jiangsu Province, the Key
University Science Research Project of Jiangsu Province
(15KJA150001), Jiangsu Key Laboratory of Advanced Catalytic
Materials & Technology (BM2012110), and Advanced
Catalysis and Green Manufacturing Collaborative Innovation
Center for financial support.
On the basis of these experimental results, a tentative
pathway of this reaction is outlined in Scheme 5. In the case of
REFERENCES
Scheme 5. Tentative Mechanism
■
(1) For reviews, see: (a) Vadivelu, A.; Gopal, V.; Reddy, C. U. M.;
Evanjelene, V. K. J. Chem. Pharm. Res. 2014, 6, 855. (b) Haider, S.;
Alam, M. S.; Hamid, H. Eur. J. Med. Chem. 2015, 92, 156. (c) Hu, Y.;
Li, C.-Y.; Wang, X.-M.; Yang, Y.-H.; Zhu, H.-L. Chem. Rev. 2014, 114,
5572. (d) Jain, A. K.; Sharma, S.; Vaidya, A.; Ravichandran, V.;
Agrawal, R. K. Chem. Biol. Drug Des. 2013, 81, 557. (e) Christoforou, I.
C.; Koutentis, P. A.; Michaelidou, S. S. ARKIVOC 2006, 7, 207.
(f) Jain, A. K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R. K.
Chem. Biol. Drug Des. 2013, 81, 557. (g) Khazi, I. A. M.; Gadad, A. K.;
Lamani, R. S.; Bhongade, B. A. Tetrahedron 2011, 67, 3289.
(2) (a) Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J. P. Eur. J. Med.
Chem. 2008, 43, 1945. (b) Sharma, R.; Prasad, Y.; Mishra, G. P.;
Chaturvedi, S. C. Med. Chem. Res. 2014, 23, 252.
(3) (a) Clerici, F.; Pocar, D.; Guido, M.; Loche, A.; Perlini, V.;
Brufani, M. J. Med. Chem. 2001, 44, 931. (b) Jubie, S.; Dhanabal, P.;
Azam, M. A.; Kumar, N. S.; Ambhore, N.; Kalirajan, R. Med. Chem. Res.
2015, 24, 1605.
(4) (a) Manjunatha, K.; Poojary, B.; Kumar, V.; Lobo, P. L.;
Fernandes, J.; Chandrashekhar, C. Pharm. Chem. 2015, 7, 207.
(b) Farghaly, T. A.; Abdallah, M. A.; Masaret, G. S.; Muhammad, Z. A.
Eur. J. Med. Chem. 2015, 97, 320.
the blank experiment, in step 1, under basic conditions, the
sequential elimination of proton and Ts− in benzaldehyde N-
tosyl hydrazone took place leading to a diazo species, which
transformed to carbene species by the extrusion of N2.17−19
Then, the reaction of carbene species with elemental sulfur
produced benzothialdehyde 7.20 Meanwhile, in the presence of
base, the anion species 8 was formed. In step 2, the nucleophilic
attack of 8 to 7 provided intermediate 9. Then, the
intramolecular nucleophilic attack of 9 produced intermediate
10. Finally, the elimination of Ts− in intermediate 10 delivered
intermediate 11, which transformed to the final product by
aromatization. In the presence of CuI, the copper carbene may
be involved in the procedure.
In conclusion, we have developed a copper-promoted
selective denitrogenation MCR between aryl aldehyde N-tosyl
hydrazone, alkyl aldehyde N-tosyl hydrazone, and elemental
sulfur toward 2-aryl-5-alkyl-1,3,4-thiadiazoles with chemical
diversity and complexity in moderate yields. In this procedure,
the selective denitrogenation took place in alkyl N-tosyl
hydrazone rather than in aryl aldehyde N-tosyl hydrazine.
Notably, this procedure was also applicable in the synthesis of
symmetric 2,5-disubstituted-1,3,4-thiadiazoles.
(5) (a) Kolavi, G.; Hegde, V.; Khazi, I.; Gadad, P. Bioorg. Med. Chem.
2006, 14, 3069. (b) Oruc, E. E.; Rollas, S.; Kandemirli, F.; Shvets, N.;
Dimoglo, A. S. J. Med. Chem. 2004, 47, 6760.
(6) (a) Salgin-Goksen, U.; Gokhan-Kelekci, N.; Goktas, O.; Koysal,
Y.; Kilic, E.; Isik, S.; Aktay, G.; Ozalp, M. Bioorg. Med. Chem. 2007, 15,
5738. (b) Chidananda, N.; Poojary, B.; Sumangala, V.; Kumari, N. S.;
Shetty, P.; Arulmoli, T. Eur. J. Med. Chem. 2012, 51, 124.
(7) (a) Lee, J.; Lee, S.-H.; Seo, H. J.; Son, E.-J.; Lee, S. H.; Jung, M.
E.; Lee, M. W.; Han, H. K.; Kim, J.; Kang, J.; Lee, J. Bioorg. Med. Chem.
2010, 18, 2178. (b) Pattan, S. R.; Kekare, P.; Dighe, N. S.; Nirmal, S.
A.; Musmade, D. S.; Parjane, S. K.; Daithankar, A. V. J. Chem. Pharm.
Res. 2009, 1, 191.
(8) (a) Kumar, D.; Maruthi Kumar, N.; Chang, K. H.; Shah, K. Eur. J.
Med. Chem. 2010, 45, 4664. (b) Megally Abdo, N. Y.; Kamel, M. M.
Chem. Pharm. Bull. 2015, 63, 369.
(9) (a) Hasui, T.; Matsunaga, N.; Ora, T.; Ohyabu, N.; Nishigaki, N.;
Imura, Y.; Igata, Y.; Matsui, H.; Motoyaji, T.; Tanaka, T.; Habuka, N.;
Sogabe, S.; Ono, M.; Siedem, C. S.; Tang, T. P.; Gauthier, C.; De
C
Org. Lett. XXXX, XXX, XXX−XXX