Edge Article
Chemical Science
Int. Ed., 2014, 53, 1650–1653; (b) F. Hu, X. Shao, D. Zhu,
L. Lu and Q. Shen, Angew. Chem., Int. Ed., 2014, 53, 6105–
6109; (c) S. Alazet, L. Zimmer and T. Billard, Angew. Chem.,
Int. Ed., 2013, 52, 10814–10817. For a mini-review on direct
triuoromethylthiolation: ; (d) A. Tlili and T. Billard,
Angew. Chem., Int. Ed., 2013, 52, 6818–6819.
Conclusions
In conclusion, we have developed a mild and fast photocatalytic
approach to the direct triuoromethylation of thiols. The
method was shown to have a broad substrate scope allowing for
3
the preparation of aryl, heteroaryl and alkyl S–CF compounds
in good-to-excellent yields. Furthermore, our protocol allows for
variation of the peruoroalkyl halide coupling partner giving
rise to peruoroalkylated thiophenols. Acceleration of the
photocatalytic protocol was achieved in a continuous-ow
photomicroreactor (reaction times can be reduced to the
6 (a) V. N. Boiko, G. M. Shchupak and L. M. Yagupolskii, Zh.
Org. Khim., 1977, 13, 1057–1061; (b) V. N. Boiko,
T. A. Dashevskaya, G. M. Shchupak and L. M. Yagupolskii,
Zh. Org. Khim., 1979, 15, 396–400; (c) V. N. Boiko,
G. M. Shchupak and L. M. Yagupolskii, Zh. Org. Khim.,
1985, 21, 1470–1477.
3
minute range). Most notably, only a slight excess of CF I (1.1
equivalents) was required in the continuous-ow experiments
due to excellent gas–liquid mass transfer characteristics. Given
the operational simplicity of both batch and ow protocols, we
anticipate that our photocatalytic method for the tri-
7 T. Billard, N. Roques and B. R. Langlois, J. Org. Chem., 1999,
64, 3813–3820.
8 (a) V. G. Koshechko, L. A. Kiprianova and L. I. Fileleeva,
Tetrahedron Lett., 1992, 33, 6677–6678; (b) V. G. Koshechko,
L. A. Kiprianova, L. I. Fileleeva and Z. Z. Rozhkova, J.
Fluorine Chem., 1995, 70, 277–278; (c) V. G. Koshechko,
L. A. Kiprianova, L. I. Fileleeva and K. G. Tsanov, J. Fluorine
Chem., 1999, 96, 163–166.
uoromethylation of thiols will nd broad application in
academia and industry.
Acknowledgements
9
T. Umemoto and S. Ishihara, J. Am. Chem. Soc., 1993, 115,
2156–2164.
TN. would like to acknowledge nancial support from the Dutch
Science Foundation for a VENI Grant (no. 12464) and from the 10 (a) P. Eisenberger, S. Gischig and A. Togni, Chem.–Eur. J.,
European Union for a Marie Curie CIG Grant. XW. thanks the
Harvard NeuroDiscovery Center for nancial support. Funding
2006, 12, 2579–2586; (b) I. Kieltsch, P. Eisenberger and
A. Togni, Angew. Chem., Int. Ed., 2007, 46, 754–757.
by the Advanced European Research Council Grant (Grant 11 T. Umemoto, Chem. Rev., 1996, 96, 1757–1778.
number: 267443 for VH.) is kindly acknowledged.
12 For selected reviews about photoredox catalysis: (a)
K. Zeitler, Angew. Chem., Int. Ed., 2009, 48, 9785–9789; (b)
J. W. Tucker and C. R. J. Stephenson, J. Org. Chem., 2012,
Notes and references
77, 1617–1722; (c) C. K. Prier, D. A. Rankic and
1
2
(a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis
Reactivity & Applications, Wiley-VCH, Weinheim, 2004; (b)
J.-P. B ´e gu ´e and D. Bonnet-Delpon, Bioorganic and Medical
Chemistry of Fluorine, Wiley-VCH, Hoboken, 2008.
D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322–5363; (d)
D. A. Nicewicz and T. M. Nguyen, ACS Catal., 2014, 4, 355–
360.
13 X. Wang, G. D. Cuny and T. No ¨e l, Angew. Chem., Int. Ed.,
2013, 52, 7860–7864.
(a) K. Muller, C. Faeh and F. Diederich, Science, 2007, 317,
1
881–1886; (b) S. Purser, P. R. Moore, S. Swallow and 14 For a report with disuldes as reaction partner: M. Majek
V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320–330; (c)
P. W. Miller, N. J. Long, R. Vilar and A. D. Gee, Angew.
and A. J. von Wangelin, Chem. Commun., 2013, 49, 5507–
5509.
Chem., Int. Ed., 2008, 47, 8998–9033; (d) J. Wang, 15 For recent developments on C–CF
3
bond formations via
CF I, see: (a)
M. Sanchez-Rosello, J. L. Acena, C. del Pozo,
A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu,
Chem. Rev., 2014, 114, 2432–2506.
For recent reviews regarding triuoromethylation or
peruoroalkylation, see: (a) T. Furuya, A. S. Kamlet and
T. Ritter, Nature, 2011, 473, 470–477; (b) O. A. Tomashenko
and V. V. Grushin, Chem. Rev., 2011, 111, 4475–4521; (c)
Y. Mac ´e and E. Magnier, Eur. J. Org. Chem., 2012, 2479–
photoredox
catalysis
utilizing
3
N. J. W. Straathof, H. P. L. Gemoets, X. Wang,
J. C. Schouten, V. Hessel and T. No ¨e l, ChemSusChem, 2014,
7, 1612–1617; (b) N. J. W. Straathof, D. J. G. P. van Osch,
A. Schouten, X. Wang, J. C. Schouten, V. Hessel and
T. No ¨e l, J. Flow Chem., 2014, 4, 12–17; (c) N. Iqbal, J. Jung,
S. Park and E. J. Cho, Angew. Chem., Int. Ed., 2014, 53, 539–
542; (d) E. Kim, S. Choi, H. Kim and E. J. Cho, Chem.–Eur.
J., 2013, 19, 6209–6212; (e) N. Iqbal, S. Choi, E. Kim and
E. J. Cho, J. Org. Chem., 2012, 77, 11383–11387; (f) Y. Ye
and M. S. Sanford, J. Am. Chem. Soc., 2012, 134, 9034–9037;
(g) P. V. Pham, D. A. Nagib and D. W. C. MacMillan,
Angew. Chem., Int. Ed., 2011, 50, 6119–6122; (h)
D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am.
Chem. Soc., 2009, 131, 10875–10877.
3
2494; (d) A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8950–
8958; (e) H. Liu, Z. Gu and X. Jiang, Adv. Synth. Catal.,
2013, 355, 617–626; (f) X. Liu, M. Wang and Q. Liu, Chem.
Rev., 2014, DOI: 10.1021/cr400473a.
L. Chu and F.-L. Qing, Acc. Chem. Res., 2014, 47, 1513–1522.
4
5
(
a) G. Landelle, A. Panossian, S. Pazenok, J. P. Vors and
F. R. Leroux, Beilstein J. Org. Chem., 2013, 9, 2476–2536; (b)
V. N. Boiko, Beilstein J. Org. Chem., 2010, 6, 880–921.
16 For reviews pertaining the combination of continuous-ow
microreactors and photochemistry: (a) T. No ¨e l, X. Wang
and V. Hessel, Chim. Oggi, 2013, 31, 10–14; (b)
For selected reports on the direct triuoromethylation: (a)
R. Pluta, P. Nikolaienko and M. Rueping, Angew. Chem.,
This journal is © The Royal Society of Chemistry 2014
Chem. Sci.