Biomacromolecules
ARTICLE
loaded DOX dose required for 50% cellular growth inhibition
(3) Wang, Y. C.; Tang, L. Y.; Sun, T. M.; Li, C. H.; Xiong, M. H.;
Wang, J. Biomacromolecules 2007, 9, 388–395.
(
IC ) is 1.6 μg/mL. This result demonstrates that DOX-loaded
5
0
(
4) Liu, J. Y.; Pang, Y.; Huang, W.; Zhu, X. Y.; Zhou, Y. F.; Yan, D. Y.
Biomaterials 2010, 31, 1334–1341.
5) Liu, J. Y.; Huang, W.; Pang, Y.; Zhu, X. Y.; Zhou, Y. F.; Yan, D. Y.
Langmuir 2010, 26, 10585–10592.
6) R €o sler, A.; Vandermeulen, G. W. M.; Klok, H.-A. Adv. Drug
Delivery Rev. 2001, 53, 95–108.
7) Zhang, L. F.; Eisenberg, A. J. Am. Chem. Soc. 1996,
PCL -A:U-PEG micelles are able to enter the cells and
4
9
114
produce the desired pharmacological action. On the other hand,
the IC50 of free DOX is 0.75 μg/mL, which exhibits higher
inhibition compared with DOX-loaded micelles. It is well
reported by previous literatures that the free drug is more potent
(
(
30,49
than the loaded drug.
The lower cytotoxicity of DOX-loaded
(
micelles can be attributed to the time-consuming DOX release
from micelles and delayed nuclear uptake in HeLa cells, which
have been proved by the in vitro DOX release and internalization
studies by CLSM.
1
18, 3168–3181.
(8) Liu, J. Y.; Huang, W.; Pang, Y.; Zhu, X. Y.; Zhou, Y. F.; Yan, D. Y.
Biomaterials 2010, 31, 5643–5651.
(9) Kwon, G. S.; Kataoka, K. Adv. Drug Delivery Rev. 1995, 16
95–309.
2
1
(10) Kwon, G. S.; Okano, T. Adv. Drug Delivery Rev. 1996, 21,
’
CONCLUSIONS
07–116.
(
11) Ko, J.; Park, K.; Kim, Y. S.; Kim, M. S.; Han, J. H.; Kim, K.; Park,
R. W.; Kim, I. S.; Song, H. K.; Lee, D. S. J. Controlled Release 2007,
23, 109–115.
12) Xue, Y. N.; Huang, Z. Z.; Zhang, J. T.; Liu, M.; Zhang, M.;
Huang, S. W.; Zhuo, R. X. Polymer 2009, 50, 3706–3713.
13) Yang, Y. Q.; Zheng, L. S.; Guo, X. D.; Qian, Y.; Zhang, L. J.
Biomacromolecules 2010, 12, 116–122.
14) Lee, E. S.; Na, K.; Bae, Y. H. Nano Lett. 2005, 5, 325–329.
(15) Schmaljohann, D. Adv. Drug Delivery Rev. 2006, 58, 1655–1670.
(16) Rapoport, N. Prog. Polym. Sci. 2007, 32, 962–990.
(17) Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. J. Controlled
Release 2008, 126, 187–204.
We have successfully developed novel stimuli-responsive
micelles self-assembled from supramolecular amphiphilic block
copolymer PCL-A:U-PEG. This study demonstrates that PCL-A:
U-PEG micelles have strong response to mildly acid pH and are
capable of rapidly releasing DOX inside the cells to yield
significantly enhanced drug efficacy. The resulting micelles are
nontoxic. Supramolecular copolymer micelles based on multiple
hydrogen bonding interactions are very appealing drug carriers,
because they can potentially combine the advantages of tradi-
tional covalent-linked copolymer micelles and dynamic supra-
molecular properties. Hence, such stimuli-responsive micelles
are very promising candidates for improvements in drug delivery
systems.
1
(
(
(
(
18) Sun, H. L.; Guo, B. N.; Li, X. Q.; Cheng, R.; Meng, F. H.; Liu,
H. Y.; Zhong, Z. Y. Biomacromolecules 2010, 11, 848–854.
19) Zhu, L. J.; Shi, Y. F.; Tu, C. L.; Wang, R. B.; Pang, Y.; Qiu, F.;
(
Zhu, X. Y.; Yan, D. Y.; He, L.; Jin, C. Y. Langmuir 2010, 26, 8875–8881.
’
ASSOCIATED CONTENT
Supporting Information.
(20) Ulbrich, K.; ꢀS ubr, V. Adv. Drug Delivery Rev. 2004, 56, 1023–1050.
(21) Jung, J.; Lee, I. H.; Lee, E.; Park, J.; Jon, S. Y. Biomacromolecules
13
S
C NMR spectrum of uracil-
b
2007, 8, 3401–3407.
(22) Chen, W.; Meng, F. H.; Cheng, R.; Zhong, Z. Y. J. Controlled
Release 2010, 142, 40–46.
terminated poly(ethylene glycol) (PEG-U) in CDCl and vari-
3
able temperature Fourier transform infrared (FTIR) spectra in
ꢀ
1
(
23) Gillies, E. R; Fr ꢁe chet, J. M. J. Chem. Commun. 2003,
003, 1640–1641.
24) Gillies, E. R.; Fr ꢁe chet, J. M. J. Pure Appl. Chem. 2004,
6, 1295–1307.
25) He, L.; Jiang, Y.; Tu, C. L.; Li, G. L.; Zhu, B. S.; Jin, C. Y.; Zhu,
Q.; Yan, D. Y.; Zhu, X. Y. Chem. Commun. 2010, 46, 7569–7571.
26) Gillies, E. R.; Fr ꢁe chet, J. M. J. Bioconjugate Chem. 2005,
6, 361–368.
27) Chen, W.; Meng, F. H.; Li, F.; Ji, S. J.; Zhong, Z. Y. Biomacro-
molecules 2009, 10, 1727–1735.
28) Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Angew. Chem.,
Int. Ed. 2003, 42, 4640–4643.
29) Toncheva, V.; Schacht, E.; Ng, S. Y.; Barr, J.; Heller, J. J. Drug
Targeting 2003, 11, 345–353.
30) Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M.
J. Controlled Release 2004, 98, 415–426.
31) Oh, K. T.; Yin, H. Q.; Lee, E. S.; Bae, Y. H. J. Mater. Chem. 2007,
7, 3987–4001.
32) Sun, H. L.; Guo, B. N.; Cheng, R.; Meng, F. H.; Liu, H. Y.;
Zhong, Z. Y. Biomaterials 2009, 30, 6358–6366.
33) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P.
the 1800ꢀ1650 cm region of adenine-terminated poly(ε-
caprolactone) (PCL-A) and uracil-terminated poly(ethylene
glycol) (PEG-U) complexes. This material is available free of
charge via the Internet at http://pubs.acs.org.
2
7
(
(
’
AUTHOR INFORMATION
(
1
Corresponding Author
(
*
Tel.: þ86-21-34205699. Fax: þ86-21-34205722. E-mail:
bshzhu@sjtu.edu.cn; xyzhu@sjtu.edu.cn.
(
(
’
ACKNOWLEDGMENT
(
This work was financially supported by the National Natural
Science Foundation of China (20974062, 30700175) and
National Basic Research Program 2009CB930400, Shanghai
Natural Science Foundation of the Science and Technology
Commission of Shanghai Municipal Government (No.
(
1
(
0
9ZR1415100), a Fundamental Key Project (No. YG2010-
(
MS92) of Shanghai Jiaotong University, Shanghai Leading
Academic Discipline Project (No. B202), and China National
Funds for Distinguished Young Scientists (21025417).
Chem. Rev. 2001, 101, 4071–4098.
(34) Lehn, J. M. Polym. Int. 2002, 51, 825–839.
(35) M €u ller, A.; Talbot, F.; Leutwyler, S. J. Am. Chem. Soc. 2002,
124, 14486–14494.
(
36) Liu, H.; Zhang, Y. F.; Hu, J. M.; Li, C. H.; Liu, S. Y. Macromol.
’
REFERENCES
Chem. Phys. 2009, 210, 2125–2137.
(
1) Kataoka, K.; Harada, A.; Nagasaki, Y. Adv. Drug Delivery Rev.
001, 47, 113–131.
2) Arimura, H.; Ohya, Y.; Ouchi, T. Biomacromolecules 2005,
, 720–725.
(37) Thompson, M. S.; Vadala, T. P.; Vadala, M. L.; Lin, Y.; Riffle,
J. S. Polymer 2008, 49, 345–373.
(38) Gauthier, M. A.; Gibson, M. I.; Klok, H.-A. Angew. Chem., Int.
2
(
6
Ed. 2009, 48, 48–58.
1
378
dx.doi.org/10.1021/bm200155t |Biomacromolecules 2011, 12, 1370–1379