10.1002/cctc.201900882
ChemCatChem
COMMUNICATION
Morrill, Org. Biomol. Chem. 2018, 17, 1595-1607; e) M. Garbe, K.
Junge, M. Beller, Eur. J. Org. Chem. 2017, 2017, 4344-4362.
a) M. Perez, S. Elangovan, A. Spannenberg, K. Junge, M. Beller,
ChemSusChem 2017, 10, 83-86; b) A. Bruneau-Voisine, D. Wang, V.
Dorcet, T. Roisnel, C. Darcel, J.-B. Sortais, Org. Lett. 2017, 19, 3656-
3659; c) O. Martínez-Ferraté, C. Werlé, G. Franciò, W. Leitner,
ChemCatChem 2018, 10, 4514-4518; d) N. V. Shvydkiy, O. Vyhivskyi,
Y. Nelyubina, D. Perekalin, ChemCatChem 2019, 11, 1602-1605; e) A.
Zirakzadeh, S. R. M. M. de Aguiar, B. Stöger, M. Widhalm, K. Kirchner,
ChemCatChem 2017, 9, 1744-1748; f) J. Schneekönig, K. Junge, M.
Beller, Synlett 2019, 30, 503-507; g) K. Z. Demmans, M. E. Olson, R. H.
Morris, Organometallics 2018, 37, 4608-4618; h) D. Wang, A. Bruneau-
Voisine, J.-B. Sortais, Catal. Commun. 2018, 105, 31-36; i) A. Dubey, S.
M. W. Rahaman, R. R. Fayzullin, J. Khusnutdinova, ChemCatChem
2019, DOI: 10.1002/cctc.201900358.
findings, combined with the practical inactivity of 2, indicate
catalysis with
1 likely operates via the well-established
[3]
bifunctional protonation/deprotonation mechanism.[5b, 11]
Scheme 4. Stoichiometric 1H NMR studies into pre-catalyst activation.
In conclusion, we have prepared the novel Mn(I)-NHC
complex 1 and reported on its remarkable catalytic activity for
i
transfer hydrogenation of ketones with PrOH. Catalysis with 1
[4]
[5]
[6]
K. Ganguli, S. Shee, D. Panja, S. Kundu, Dalton Trans. 2019, 48, 7358-
7366.
proceeds with very high maximum TON of at least 17.000. The
complex is useful at unprecedented catalyst loadings and
enables quantitative alcohol yields at only 75 ppm Mn. Such
loadings approach those more conventionally utilized for Ru and
Ir catalysts, thus highlighting the high potential of 1 and other 3d
TM-catalyzed processes for sustainable catalysis. Significant
catalyst deactivation was observed at elevated temperatures,
which inhibited further reduction of metal content. Therefore, we
believe thorough understanding of the deactivation processes
will ultimately enable a leap forward in rational catalyst design
towards improved catalytic systems.
a) R. Noyori, M. Kitamura, T. Ohkuma, PNAS 2004, 101, 5356-5362; b)
P. A. Dub, J. C. Gordon, Nat. Rev. Chem. 2018, 2, 396-408.
a) E. Peris, Chem. Rev. 2018, 118, 9988-10031; b) H. V. Huynh, Chem.
Rev. 2018, 118, 9457-9492; c) R. E. Andrew, L. González-Sebastián, A.
B. Chaplin, Dalton Trans. 2016, 45, 1299-1305; d) D. J. Nelson, S. P.
Nolan, Chem. Soc. Rev. 2013, 42, 6723-6753.
[7]
a) S. N. Sluijter, T. J. Korstanje, J. I. van der Vlugt, C. J. Elsevier, J.
Organomet. Chem. 2017, 845, 30-37; b) W. W. N. O, R. H. Morris, ACS
Catal. 2013, 3, 32-40; c) D. Zhao, B. Beiring, F. Glorius, Angew. Chem.
Int. Ed. 2013, 52, 8454-8458; d) G. A. Filonenko, M. J. B. Aguila, E. N.
Schulpen, R. van Putten, J. Wiecko, C. Müller, L. Lefort, E. J. M.
Hensen, E. A. Pidko, J. Am. Chem. Soc. 2015, 137, 7620-7623; e) G. A.
Filonenko, E. Cosimi, L. Lefort, M. P. Conley, C. Copéret, M. Lutz, E. J.
M. Hensen, E. A. Pidko, ACS Catal. 2014, 4, 2667-2671.
Experimental Section
[8]
[9]
a) J. Ruiz, Á. Berros, B. F. Perandones, M. Vivanco, Dalton Trans.
2009, 6999-7007; b) J. Ruiz, B. F. Perandones, G. García, M. E. G.
Mosquera, Organometallics 2007, 26, 5687-5695.
Supporting information contains all available data for synthesis,
characterization, and catalysis for this work.
a) F. Franco, M. F. Pinto, B. Royo, J. Lloret-Fillol, Angew. Chem. Int. Ed.
2018, 57, 4603-4606; b) M. Pinto, S. Friães, F. Franco, J. Lloret-Fillol, B.
Royo, ChemCatChem 2018, 10, 2734-2740; c) R. Buhaibeh, O. A.
Filippov, A. Bruneau-Voisine, J. Willot, C. Duhayon, D. A. Valyaev, N.
Lugan, Y. Canac, J.-B. Sortais, Angew. Chem. Int. Ed. 2019, 58, 6727-
6731.
Acknowledgements
This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement #725686).
M.W. and C.M. gratefully acknowledge the Deutsche
Forschungsgemeinschaft (DFG) for financial support.
[10] a) F. Foubelo, C. Nájera, M. Yus, Tetrahedron: Asymmetry 2015, 26,
769-790; b) T. Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300-
1308; c) K. Murata, T. Ikariya, R. Noyori, J. Org. Chem. 1999, 64, 2186-
2187; d) R. Malacea, R. Poli, E. Manoury, Coord. Chem. Rev. 2010,
254, 729-752; e) N. Pannetier, J.-B. Sortais, J.-T. Issenhuth, L. Barloy,
C. Sirlin, A. Holuigue, L. Lefort, L. Panella, J. G. de Vries, M. Pfeffer,
Adv. Synth. Catal. 2011, 353, 2844-2852.
Keywords: Manganese • N-Heterocyclic Carbene • Transfer
[11] a) S. E. Clapham, A. Hadzovic, R. H. Morris, Coord. Chem. Rev. 2004,
248, 2201-2237; b) A. A. Mikhailine, M. I. Maishan, A. J. Lough, R. H.
Morris, J. Am. Chem. Soc. 2012, 134, 12266-12280; c) P. A. Dub, N. J.
Henson, R. L. Martin, J. C. Gordon, J. Am. Chem. Soc. 2014, 136,
3505-3521; d) P. A. Dub, J. C. Gordon, ACS Catal. 2017, 7, 6635-6655;
e) P. A. Dub, B. L. Scott, J. C. Gordon, J. Am. Chem. Soc. 2017, 139,
1245-1260.
Hydrogenation • Ketones • Alcohols
[1]
[2]
D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621-6686.
a) G. A. Filonenko, R. van Putten, E. J. M. Hensen, E. A. Pidko, Chem.
Soc. Rev. 2018, 47, 1459-1483; b) F. Kallmeier, R. Kempe, Angew.
Chem. Int. Ed. 2018, 57, 46-60; c) N. Gorgas, K. Kirchner, Acc. Chem.
Res. 2018, 51, 1558-1569; d) B. G. Reed-Berendt, K. Polidano, L. C.
This article is protected by copyright. All rights reserved.