10.1002/chem.201904911
Chemistry - A European Journal
COMMUNICATION
sulfonamides with excellent diastereoselectivities (Table 3, 7g–
7k). Changing the nature of the sulfonamide (Table 3, 7g–7i) or
the electronic nature of the phenyl substituent (Table 3, 7j–7k) did
not influence the diastereoselectivity. Please note that methanol
was used in order to increase solubility of the sulfonamide starting
materials. However, changing the nature of the solvent, did not
influence our direct hydrogenation pathway as isotope labeling
experiments showed > 80% incorporation of the deuterium label
at the carbonyl carbon (Figure S103–106).
pathway. Overall, the reaction proceeds under ambient conditions
(0 °C, 6 bar H2), with iridium complexes that contain our recently
developed chiral imidazo[1,5-a]pyridine-oxazoline NHCs. Current
efforts are directed towards obtaining mechanistic insights into
the herein reported reaction, since our catalyst lacks the
possibility to go through classical Noyori-type N–H assisted
mechanism.[18] In conclusion, this work contributes the towards
the direct asymmetric hydrogenation that proceeds in good
enantioselectivity and excellent yields. Given the modularity of the
herein present catalysts and ligands, exciting new reactions are
expected that were previously reserved for a privileged set of
phosphine-based ligands.
Table 3. Direct asymmetric hydrogenation and dynamic kinetic resolution
of α-substituted ketones.a–e
OH
O
5a (1.0 mol %), KOtBu (6.0
mol %), H2 (6 bar)
R2
R2
Acknowledgements
R1
R1
Toluene or MeOH, 0 °C, 6 h
Research was supported by the Azrieli Foundation (Israel), and
the Technion EVPR Fund – Mallat Family Research Fund. G.de.R
is an Azrieli young faculty fellow and a Horev Fellow supported by
the Taub Foundation. G.de.R wishes to thank Prof. Mark
Gandelman for the use of his chiral HPLC.
Cyclohexanones
OH
OH
OH
OH
Me
Ph
Bn
7c, dr 16:1,
19% ee, 84% yield
7b, dr >99:1,
48% ee, 99% yield
7d, dr 10:1,
15% ee, 99% yield
7a, dr >10:1,
nde, 99% yield
Keywords: Asymmetric Catalysis • Hydrogenation • N-
Others
OH
OH
Heterocyclic Carbenes • Iridium • Aryl Ketones
Me
[1]
(a) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature (London,
U. K.) 2014, 510, 485-496; (b) S. Díez-González, N. Marion, S. P. Nolan,
Chem. Rev. (Washington, DC, U. S.) 2009, 109, 3612-3676; (c) F. E.
Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122-3172; (d) W.
A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290-1309.
OH
7f, dr 3:1,
0% ee. 92% yield
7e, dr 5:1,
nde, 99% yield
Sulfonamides
OH
[2]
[3]
T. Droege, F. Glorius, Angew. Chem., Int. Ed. 2010, 49, 6940-6952.
(a) C. Fliedel, A. Labande, E. Manoury, R. Poli, Coord. Chem. Rev. 2019,
394, 65-103; (b) M. Zhao, Y.-T. Zhang, J. Chen, L. Zhou, Asian J. Org.
Chem. 2018, 7, 54-69; (c) D. Janssen-Mueller, C. Schlepphorst, F.
Glorius, Chem. Soc. Rev. 2017, 46, 4845-4854; (d) J. Iglesias-Siguenza,
C. Izquierdo, E. Diez, R. Fernandez, J. M. Lassaletta, Dalton Trans. 2016,
45, 10113-10117; (e) F. Wang, L.-j. Liu, W. Wang, S. Li, M. Shi, Coord.
Chem. Rev. 2012, 256, 804-853; (f) L. H. Gade, S. Bellemin-Laponnaz,
Top. Organomet. Chem. 2007, 21, 117-157; (g) V. Cesar, S. Bellemin-
Laponnaz, L. H. Gade, Chem. Soc. Rev. 2004, 33, 619-636; (h) W. A.
Herrmann, L. J. Goossen, C. Köcher, G. R. J. Artus, Angew. Chem. Int.
Ed. 1996, 35, 2805-2807.
OH
O
O
S
OH
O
S
N
O
S
Ph
Ph
N
Ph
N
O
O
Me
Me
O
Me
7g, dr >99:1,
5% ee, 99% yield
7h, dr >99:1,
35% ee, 99% yield
7i, dr >99:1,
61% ee, 99% yield
OH
O
S
OH
O
S
R1
R1
N
N
O
O
Me
O
Me
O
7k, R1= 4-OMeC6H4
dr >99:1, 18% ee, 98% yield
7j, R1= 4-FC6H4
dr >99:1, 79% ee, 95% yield
[4]
(a) P. Gao, G. Sipos, D. Foster, R. Dorta, ACS Catal. 2017, 7, 6060-
6064; (b) J. M. O’Brien, K.-s. Lee, A. H. Hoveyda, J. Am. Chem. Soc.
2010, 132, 10630-10633; (c) S. Würtz, C. Lohre, R. Fröhlich, K.
Bergander, F. Glorius, J. Am. Chem. Soc. 2009, 131, 8344-8345; (d) E.
P. Kündig, T. M. Seidel, Y.-x. Jia, G. Bernardinelli, Angew. Chem. Int. Ed.
2007, 46, 8484-8487; (e) T. W. Funk, J. M. Berlin, R. H. Grubbs, J. Am.
Chem. Soc. 2006, 128, 1840-1846.
aSee supporting information for experimental details. bYields were determined
by 1H NMR spectroscopy in the presence of an internal standard. Isolated yields
are averaged over a series of two runs. cdiastereomeric ratios were determined
by 1H NMR spectroscopy and reported in the supporting information.
dEnantiomeric excess (ee) for each substrate was determined by chiral HPLC.
eFor substrates 7a and 7e, the chiral HPLC chromatogram could not sufficiently
be resolved to determine the enantomeric excess.
[5]
[6]
(a) Y. Zhu, K. Burgess, Acc. Chem. Res. 2012, 45, 1623-1636; (b) L. H.
Gade, S. Bellemin-Laponnaz, Coord. Chem. Rev. 2007, 251, 718-725.
(a) D. Zhao, L. Candish, D. Paul, F. Glorius, ACS Catal. 2016, 6, 5978-
5988; (b) A. Schumacher, M. Bernasconi, A. Pfaltz, Angew. Chem. Int.
Ed. 2013, 52, 7422-7425; (c) D. H. Woodmansee, A. Pfaltz, Chem.
Commun. 2011, 47, 7912-7916; (d) K. Källström, P. G. Andersson,
Tetrahedron Lett. 2006, 47, 7477-7480; (e) S. Nanchen, A. Pfaltz, Chem.
Eur. J. 2006, 12, 4550-4558; (f) M. C. Perry, X. Cui, M. T. Powell, D.-R.
Hou, J. H. Reibenspies, K. Burgess, J. Am. Chem. Soc. 2003, 125, 113-
123; (g) M. T. Powell, D.-R. Hou, M. C. Perry, X. Cui, K. Burgess, J. Am.
Chem. Soc. 2001, 123, 8878-8879.
In summary, we have demonstrated the asymmetric
hydrogenation of ketones that proceeds in good enantioselectivity
(up to 93% ee). Moreover, by using racemic α-substituted ketones
we were also able to obtain high diastereoselectivities via a
cascade asymmetric hydrogenation/dynamic kinetic resolution
pathway enabling the synthesis biologically relevant sulfonamides
with two contiguous stereocenters. Isotope labeling studies in
both the direct asymmetric hydrogenation as in the dynamic
kinetic resolution have unequivocally confirmed the preference of
direct asymmetric hydrogenation over a transfer hydrogenation
[7]
(a) H. U. Blaser, B. Pugin, F. Spindler, L. H. Saudan, in Applied
Homogeneous Catalysis with Organometallic Compounds, Vol. 3 (Eds.:
B. Cornils, W. A. Herrmann, M. Beller, R. Paciello), Wiley‐VCH Verlag
This article is protected by copyright. All rights reserved.