C O M M U N I C A T I O N S
Table 2. Enantioselective Addition of Me2Zn to Aldehydes
Promoted by ClCr(Salen)
oni in Chimica Organica: Metodologie ed Applicazioni), and FIRB
(Progettazione, preparazione e valutazione biologicae farmacologica
di nuove molecole organiche quali potenziali farmaci innovativi)
are gratefully acknowledged.
Supporting Information Available: Representative experimental
1
13
procedure, and details for H and C NMR and chiral HPLC analysis
of enantiomerically enriched alcohols. This material is available free
of charge via the Internet at http://pubs.acs.org.
entrya
RCHO
yieldb
ee (%)c
1
2-naphthylCHO
3-BrC6H4CHO
3-thiophenylCHO
4-MeSC6H4CHO
4-CF3C6H4CHO
4-PhC6H4CHO
91
86
86
88
95
89
87
80
89
95
81
68
82
75
73
78
57
56
49
40
65
93
96
99
98
94
94
96
95
96
92
89
82
80
97
80
73
76
79
82
71
77
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
References
(1) (a) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757-824. (b) Soai, K.; Niwa,
S. Chem. ReV. 1992, 92, 833-856.
i
(2) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49-
4- PrC6H4CHO
d
69.
3-benzo[b]thiophenylCHO
t
(3) (a) Braga, A. L.; Alves, E.; Silveira, C.; Zeni, G.; Appelt, H.; Wessjohan,
L. Synthesis 2005, 588-594. (b) Tseng, S.-L.; Yang, T.-K. Tetrahedron:
Asymmetry 2004, 15, 3375-3380.
4- BuPhCHO
d
0
1
2
3
4
5
6
7
8
9
0
1
4-MeOPhCHO
(E)-PhCHdCHCHO
cC6H11CHO
d
(
4) Braga, A. L.; Paixao, M. W.; Ludtke, D. S.; Silveira, C. C.; Rodrigues,
f
O. E. D. Org. Lett. 2003, 5, 2635-2638.
e,f
e,f,g
g
i
PrCHO
(5) Sprout, C. M.; Seto, C. T. J. Org. Chem. 2003, 68, 7788-7794.
t
ButylCHO
(6) (a) Vastila, P.; Pastor, I. M.; Adolfsson, H. J. Org. Chem. 2005, 70, 2921-
2929. (b) Mao, J.; Wan, B.; Wang, R.; Wu, F.; Lu, S. J. Org. Chem.
2004, 69, 9123-9127.
1-(3-phenyl-allyl)-cyclohexanecarbaldehyde
2-methyl-2-phenyl-propionaldehyde
2,2-dimethyl-pent-4-enal
2,2-dimethyl-3-phenylpropionaldehyde
2,2-dimethyl-4-phenyl-pent-4-enal
1-benzyloxy-2-methyl-propanal
g
f,h
f,g
f,g
g
(7) For enantioselective addition of Me
H.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 15453-
5456. (b) Blay, G.; Fern a` ndez, I.; Hern a` ndez-Olmos, V.; Marco-
2
Zn, see: (a) Wieland, L. C.; Deng,
1
Aleixandre, A.; Pedro, J. R. Tetrahedron: Asymmetry 2005, 16, 1953-
1958. (c) Lurain, A. E.; Maestri, A.; Kelly, A. R.; Carroll, P. J.; Walsh,
P. J. J. Am. Chem. Soc. 2004, 126, 13608-13609. (d) Garc `ı a-Delgado,
N.; Fontes, M.; Peric a` s, M. A.; Riera, A.; Verdaguer, X. Tetrahedron:
Asymmetry 2004, 15, 2085-2090. (e) Sprout, C. M.; Richmond, M. L.;
Seto, C. T. J. Org. Chem. 2004, 69, 6666-6673. (f) Cozzi, P. G.; Locatelli,
M. Lett. Org. Chem. 2004, 1, 208-211;
f,g
t
1- Bu-dimethylsilyloxy-2-methyl-propanal
a
Reactions were carried out on a 0.3 mmol scale at RT for 24 h
b
employing 2 mol % of ClCr(Salen). Isolated yield after chromatographic
purification. Determined by chiral HPLC analysis unless noted otherwise.
Absolute configuration was established by comparison with the reported
optical rotation for known alcohols. Reaction carried out for 48 h using 4
mol % of catalyst. Volatile product. Yield calculated on the corresponding
,5-dinitrobenzoate prepared from the crude reaction mixture. Determined
by chiral HPLC analysis on the corresponding 3,5-dinitrobenzoate. The
% of ClCr(Salen) was dissolved in the 2 M toluene solution of Me2Zn,
then the aldehyde was added neat by syringe at 0 °C. The reaction was
c
(
8) Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989,
111, 4028-4036.
d
(
9) (a) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Chem. Commun. 2002,
e
9
19-927. (b) Katsuki, T. Chem. Soc. ReV. 2004, 33, 437-444. (c) Canali,
f
3
L.; Scherrington, D. C. Chem. Soc. ReV. 1999, 28, 85-93. (d) McGarrigle,
E. M.; Gilheany, D. G. Chem. ReV. 2005, 105, 1563-1602.
g
4
(10) (a) Larrow, J. F.; Jacobsen, E. J. Top. Organomet. Chem. 2004, 6, 123-
152. (b) Cozzi, P. G. Chem. Soc. ReV. 2004, 33, 410-421.
h
stirred 24 h at RT. The 1% of ClCr(Salen) was dissolved in the 2 M toluene
solution of Me2Zn, then the aldehyde was added neat by syringe at 0 °C.
(11) Cozzi, P. G.; Papa, A.; Umani-Ronchi, A. Tetrahedron Lett. 1996, 37,
4613-4616.
The reaction was stirred 48 h at RT.
(12) (a) Fennie, M. W.; DiMauro, E. F.; O’Brien, E. M.; Annamalai, V.;
Kozlowski, M. C. Tetrahedron 2005, 61, 6249-6265. (b) DiMauro, E.
F.; Kozlowski, M. C. Org. Lett. 2001, 3, 3053-3056. (c) DiMauro, E.
F.; Kozlowski, M. C. J. Am. Chem. Soc. 2002, 124, 12668-12669.
7
b
gies are often not reactive enough to hindered aliphatic aldehydes.
Our procedure does not require the use of Ti(O Pr)
i
6b
(13) (a) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691-1693. (b)
4
and gives
Darensbourg, D. J.; Mackiewicz, R. M. J. Am. Chem. Soc. 2005, 127,
new perspective to the M(Salen)-catalyzed addition of organome-
1
4026-14038. (c) Jarvo, E. R.; Lawrence, B. M.; Jacobsen, E. N. Angew.
1
0,11
Chem., Int. Ed. 2005, 44, 6043-6046.
tallic reagents,
where Cr(Salen) metal complexes could be
employed.18 Possible mechanisms involving activation of aldehydes
(14) Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 62-63.
(
(
(
2
15) Me Zn can be used as deprotonating agent in alkynylation, due to its lower
and/or activation of Me Zn by the chiral Cr complex will be
2
reactivity towards aldehydes: Cozzi, P. G.; Rudolph, J.; Bolm, C.; Norrby,
P.-O.; Tomasini, C. J. Org. Chem. 2005, 70, 5733-5736.
evaluated in more comprehensive studies.
To summarize, we have developed a highly enantioselective
addition of Me Zn to aldehydes employing the commercially
2
available ClCr(Salen), which provides high selectivity for aromatic
and hindered aliphatic aldehydes or R,â-unsaturated aldehydes with
a simple reaction procedure. Further work in our laboratory will
be directed toward exploiting the use of Cr(Salen) metal complexes
in the catalytic addition of other organometallic reagents to
aldehydes and ketones.19
16) An important green chemistry approach to more efficient asymmetric
reactions was reported by Walsh, see: Jeon, S.-J.; Li, H.; Walsh, P. J. J.
Am. Chem. Soc. 2005, 127, 16416-16425.
17) Linear aliphatic aldehydes were also tested; Hydrocinnamic aldehyde gives
8
6% ee, and octanal gives 81% ee. With cyclohexanecarboxaldehyde
(
Table 2, entry 12, 68% yield) only unreacted aldehyde and the desired
product were observed by GC/MS and TLC after quenching.
18) For an efficient addition to AlMe to aldehydes catalyzed by 2% of
Feringa’s ligand in the presence of Ni(acac) , see: Biswas, K.; Prieto,
(
3
2
O.; Goldsmith, P. J.; Woodward, S. Angew. Chem., Int. Ed. 2005, 44,
2232-2334.
(
19) (a) Kwiatkowski, P.; Chaladaj, W.; Jurczak, J. Synlett 2005, 2301-2304.
(b) Shimada, Y.; Katsuki, T. Chem. Lett. 2005, 786-787.
Acknowledgment. Financial support from the European Com-
munity (IBAAC Project), MIUR (Progetto Nazionale Stereoselezi-
JA057969D
J. AM. CHEM. SOC.
9
VOL. 128, NO. 15, 2006 4941