Journal of the American Chemical Society
Communication
NCU08760 was substituted for NCU01050, 10-fold less
galactose was formed (Supplementary Figure 3).
Together, these results provide support for the reaction
pathway shown in Scheme 1. Type-1 PMOs insert oxygen at
ACKNOWLEDGMENTS
■
We thank S. Bauer and M. Pauly for helpful discussions on
carbohydrate analysis. W.T.B. and C.M.P. were recipients of
NSF predoctoral fellowships. This work was funded by a grant
from the Energy Biosciences Institute to J.H.D.C. and M.A.M.
Scheme 1. Proposed Reaction Pathway for Oxidative
Cleavage of Cellulose by PMOs
REFERENCES
■
(
1) Perlack, R. D.; Wright, L. L.; Turhollow, A. F.; Graham, R. L.;
Stokes, B. J.; Erbach, D. C. Biomass as Feedstock for a Bioenergy and
Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual
Supply; Oak Ridge National Laboratory: Oak Ridge, TN, 2005.
(2) Himmel, M. E.; Ding, S. Y.; Johnson, D. K.; Adney, W. S.;
Nimlos, M. R.; Brady, J. W.; Foust, T. D. Science 2007, 315, 804.
(
(
3) Wilson, D. B. Curr. Opin. Biotechnol. 2009, 20, 295.
4) Tian, C.; Beeson, W. T.; Iavarone, A. T.; Sun, J.; Marletta, M. A.;
Cate, J. H. D.; Glass, N. L. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
2157.
2
(5) Eastwood, D. C.; et al. Science 2011, 333, 762.
(6) MacDonald, J.; Doering, M.; Canam, T.; Gong, Y.; Guttman, D.
S.; Campbell, M. M.; Master, E. R. Appl. Environ. Microbiol. 2011, 77,
211.
7) Vanden Wymelenberg, A.; Gaskell, J.; Mozuch, M.; Sabat, G.;
Ralph, J.; Skyba, O.; Mansfield, S. D.; Blanchette, R. A.; Martinez, D.;
Grigoriev, I.; Kersten, P. J.; Cullen, D. Appl. Environ. Microbiol. 2010,
76, 3599.
3
(
C1, while the NCU01050 type-2 PMO inserts oxygen at the 4
position. After oxygen insertion, the glycosidic bond is
destabilized and likely broken by an elimination reaction,
which may be catalyzed by the PMO or occur spontaneously.
This elimination is irreversible because the carbon on the
reducing or nonreducing end has been oxidized.
(
(
8) Berka, R. M.; et al. Nat. Biotechnol. 2011, 29, 922.
9) Phillips, C. M.; Iavarone, A. T.; Marletta, M. A. J. Proteome Res.
2
(
011, 10, 4177.
10) Langston, J. A.; Shaghasi, T.; Abbate, E.; Xu, F.; Vlasenko, E.;
Sweeney, M. D. Appl. Environ. Microbiol. 2011, 77, 7007.
11) Quinlan, R. J.; et al. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
5079.
12) Harris, P. V.; Welner, D.; McFarland, K. C.; Re, E.; Navarro
Insertion of oxygen likely occurs following PMO-mediated
hydrogen abstraction from C1 or C4 to generate a substrate
radical. This substrate radical could recombine with a copper−
oxo species in the PMO active site, hydroxylating the glucan
chain to form the intermediate shown. The C−H bond
dissociation energy for C4 is higher than that for C1 and likely
similar to those for the remaining positions on the pyranose
ring, suggesting that a PMO could insert oxygen at any
(
1
(
Poulsen, J. C.; Brown, K.; Salbo, R.; Ding, H.; Vlasenko, E.; Merino, S.;
Xu, F.; Cherry, J.; Larsen, S.; Lo Leggio, L. Biochemistry 2010, 49,
3305.
2
2
(
13) Phillips, C. M.; Beeson, W. T. IV; Cate, J. H.; Marletta, M. A.
ACS. Chem. Biol. 2011, 6, 1399.
14) Karkehabadi, S.; Hansson, H.; Kim, S.; Piens, K.; Mitchinson,
C.; Sandgren, M. J. Mol. Biol. 2008, 383, 144.
15) Vaaje-Kolstad, G.; Houston, D. R.; Riemen, A. H.; Eijsink, V. G.;
van Aalten, D. M. J. Biol. Chem. 2005, 280, 11313.
16) Vaaje-Kolstad, G.; Westereng, B.; Horn, S. J.; Liu, Z.; Zhai, H.;
position. The advantage of oxygen insertion at C1 or C4 is
that a simple elimination reaction leads to bond cleavage.
Oxygen insertion at other positions would require the
involvement of additional amino acid residues on the surface
of the PMO to potentiate bond cleavage, and there would be
nothing to prevent reformation of the glycosidic bond on the
cellulose surface. There is a vast amount of sequence variation
in the PMO superfamily, and many highly cellulolytic fungi
express more than 10 different PMOs during growth on
(
(
(
Sorlie, M.; Eijsink, V. G. Science 2010, 330, 219.
(17) Beeson, W. T. IV; Iavarone, A. T.; Hausmann, C. D.; Cate, J. H.
D.; Marletta, M. A. Appl. Environ. Microbiol. 2011, 77, 650.
(18) Campbell, R. E.; Tanner, M. E. Angew. Chem., Int. Ed. Engl.
4
,8
cellulose. The residues controlling regiospecificity in PMOs
are unknown. Future work to identify the reaction products of
divergent members of the PMO superfamily may reveal what
factors control the position of oxygen insertion.
1
997, 36, 1520.
(19) Naundorf, A.; Klaffke, W. Carbohydr. Res. 1996, 285, 141.
(20) Kelleher, F. M.; Bhavanandan, V. P. J. Biol. Chem. 1986, 261,
1
1045.
21) Kelleher, F. M.; Bhavanandan, V. P. Carbohydr. Res. 1986, 155,
89.
(22) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(
ASSOCIATED CONTENT
Supporting Information
■
*
S
Additional control experiments, experimental methods, and
AUTHOR INFORMATION
Present Address
#
The Scripps Research Institute, 10550 N. Torrey Pines Road,
BCC-555, La Jolla, CA 92037.
Author Contributions
⊥
These authors contributed equally.
8
92
dx.doi.org/10.1021/ja210657t | J. Am. Chem.Soc. 2012, 134, 890−892