ACS Catalysis
Research Article
Reetz, M. T. Directed Evolution of an Enantioselective Eoate-
Reductase: Testing the Utility of Iterative Saturation Mutagenesis.
Adv. Synth. Catal. 2009, 351, 3287−3305.
Analysis of 3,000 Mutations. Biotechnol. Bioeng. 2014, 111, 2380−
2389.
(18) (a) Filling, C.; Berndt, K. D.; Benach, J.; Knapp, S.;
̈
Prozorovski, T.; Nordling, E.; Ladenstein, R.; Jornvall, H.;
(11) (a) Neylon, C. Chemical and Biochemical Strategies for the
Randomization of Protein Encoding DNA Sequences: Library
Construction Methods for Directed Evolution. Nucleic Acids. Res.
2004, 32, 1448−1459. (b) Shivange, A. V.; Marienhagen, J.;
Mundhada, H.; Schenk, A.; Schwaneberg, U. Advances in Generating
Functional Diversity for Directed Protein Evolution. Curr. Opin.
Chem. Biol. 2009, 13, 19−25. (c) Reetz, M. T.; Krebs, G. P. L.
Challenges in the Directed Evolution of Stereoselective Enzymes for
Use in Organic Chemistry. C. R. Chim. 2011, 14, 811−818. (d) Feng,
X. J.; Sanchis, J.; Reetz, M. T.; Rabitz, H. Enhancing the Efficiency of
Directed Evolution in Focused Enzyme Libraries by the Adaptive
Substituent Reordering Algorithm. Chem. - Eur. J. 2012, 18, 5646−
5654. (e) Reetz, M. T. Laboratory Evolution of Stereoselective
Enzymes as a Means to Expand the Toolbox of Organic Chemists.
Tetrahedron 2012, 68, 7530−7548.
Oppermann, U. Critical Residues for Structure and Catalysis in
Short-Chain Dehydrogenases/Reductases. J. Biol. Chem. 2002, 277,
25677−25684. (b) Deng, J.; Yao, Z. Q.; Chen, K. L.; Yuan, Y. A.; Lin,
J. P.; Wei, D. Z. Towards the Computational Design and Engineering
of Enzyme Enantioselectivity: A CaseStudy by a Carbonyl Reductase
from. J. Biotechnol. 2016, 217, 31−40.
(19) (a) Schlieben, N. H.; Niefind, K.; Muller, J.; Riebel, B.;
̈
Hummel, W.; Schomburg, D. Atomic Resolution Structures of R-
Specific Alcohol Dehydrogenase from Lactobacillus brevis Provide the
Structural Bases of its Substrate and Cosubstrate Specificity. J. Mol.
́
Biol. 2005, 349, 801−813. (b) Noey, E. L.; Tibrewal, N.; Jimenez-
́
Oses, G.; Osuna, S.; Park, J. Y.; Bond, C. M.; Cascio, D.; Liang, J.;
Zhang, X. Y.; Huisman, G. W.; Tang, Y.; Houk, K. N. Origins of
Stereoselectivity in Evolved Ketoreductases. Proc. Natl. Acad. Sci. U. S.
A. 2015, 112, E7065−E7072.
(12) (a) Lutz, S.; Patrick, W. M. Novel Methods for Directed
Evoltuion of Enzymes: Quality, not Quantity. Curr. Opin. Biotechnol.
2004, 15, 291−297. (b) Pines, G.; Pines, A.; Garst, A. D.; Zeitoun, R.
I.; Lynch, S. A.; Gill, R. T. Codon Compression Algorithms for
Saturation Mutagenesis. ACS Synth. Biol. 2015, 4, 604−614.
(13) (a) Reetz, M. T. Laboratory Evolution of Stereoselective
Enzymes: A Profilic Source of Catalysts for Asymmetric Reactions.
Angew. Chem., Int. Ed. 2011, 50, 138−174. (b) Reetz, M. T.;
Kahakeaw, D.; Lohmer, R. Addressing the Numbers Problem in
Directed Evolution. ChemBioChem 2008, 9, 1797−1804.
(20) (a) Guo, P. C.; Bao, Z. Z.; Ma, X. X.; Xia, Q.; Li, W. F.
Structural Insights into the Cofactor-Assisted Substrate Recognition
of Yeast Methylglyoxal/isovaleraldehyde Reductase Gre2. Biochim.
Biophys. Acta, Proteins Proteomics 2014, 1844, 1486−1492. (b) Qin, F.
Y.; Qin, B.; Mori, T.; Wang, Y.; Meng, L. X.; Zhang, X.; Jia, X.; Abe,
I.; You, S. Engineering of Candida glabrata Ketoreductase 1 for
Asymmetric Reduction of Alpha-halo Ketones. ACS Catal. 2016, 6,
6135−6140.
(21) Cunningham, B. C.; Wells, J. A high-Resolution Epitope
Mapping of hGH-Receptor Interactions by Aanine-Scanning Muta-
genesis. Science 1989, 244, 1081−1085.
(14) (a) Kamtekar, S.; Schiffer, J. M.; Xiong, H.; Babik, J.; Hecht, M.
H. Protein Design by Binary Patterning or Polar and Nonpolar Amino
Acids. Science 1993, 262, 1680−1685. (b) Roy, S.; Hecht, M. H.
Cooperative Thermal Denaturation of Proteins Designed by Binary
Patterning of Polar and Nonpolar Amino Acids. Biochemistry 2000,
39, 4603−4607. (c) Sun, Z. T.; Salas, P. T.; Siirola, E.; Lonsdale, R.;
Reetz, M. T. Exploring Productive Sequence Space in Directed
Evolution Using Binary Patterning versus Conventional Mutagenesis
Strategies. Bioresour. Bioprocessing 2016, 3, 44. (d) Li, G. Y.; Reetz,
M. T. Learning Lessons from Directed Evolution of Stereoselective
Enzymes. Org. Chem. Front. 2016, 3, 1350−1358. (e) Reetz, M. T.
Combinatorial Libraries Reloaded. Isr. J. Chem. 2018, 58, 52−60.
(15) (a) Hughes, M. D.; Nagel, D. A.; Santos, A. F.; Sutherland, A.
J.; Hine, A. V. Removing the Redundancy from Randomized
GeneLibraries. J. Mol. Biol. 2003, 331, 973−979. (b) Reetz, M. T.;
Wu, S. Greatly Reduced Amino Acid Alphabets in Directed Evolution:
Making the Right Choice for Saturation Mutagenesis at Homologous
Enzyme Position. Chem. Commun. 2008, 43, 5499−5501. (c) Reetz,
M. T.; Prasad, S.; Carballeira, J. D.; Gumulya, Y.; Bocola, M. Iterative
Saturation Mutagenesis Accelerates Laboratory Evolution of Enzyme
Stereoselectivity: Rigorous Comparison with Traditional Methods. J.
Am. Chem. Soc. 2010, 132, 9144−9152. (d) Kille, S.; Acevedo-Rocha,
C. G.; Parra, L. P.; Zhang, Z. G.; Opperman, D. J.; Reetz, M. T.;
Acevedo, J. P. Reducing Codon Redundancy and Screening Effort of
Combinatorial Protein Libraries Created by Saturation Mutagenesis.
ACS Synth. Biol. 2013, 2, 83−92.
(22) (a) Sun, Z. T.; Lonsdale, R.; Li, G. Y.; Reetz, M. T. Comparing
Different Strategies in Directed Evolution of Enzyme Stereo-
selectivity: Single- versus Double-Codon Saturation Mutagenesis.
ChemBioChem 2016, 17, 1865−1872. (b) Sun, Z. T.; Wikmark, Y.;
Backvall, J. E.; Reetz, M. T. New Concepts for Increasing the
Efficiency in Directed Evolution of Stereoselective Enzymes. Chem. -
Eur. J. 2016, 22, 5046−5054.
(23) Luetz, S.; Giver, L.; Lalonde, J. Engineered Enzymes for
Chemical Production. Biotechnol. Bioeng. 2008, 101, 647−653.
(16) (a) Sun, Z. T.; Lonsdale, R.; Kong, X. D.; Xu, J. H.; Zhou, J. H.;
Reetz, M. T. Reshaping an Enzyme Binding Pocket for Enhanced and
Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in
Directed Evolution. Angew. Chem., Int. Ed. 2015, 54, 12410−12415.
(b) Sun, Z. T.; Lonsdale, R.; Wu, L.; Li, G. Y.; Li, A. T.; Wang, J. B.;
Zhou, J. H.; Reetz, M. T. Structure-Guided Triple Code Saturation
Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide
Hydrolase. ACS Catal. 2016, 6, 1590−1597. (c) Sun, Z. T.; Lonsdale,
R.; Ilie, A.; Li, G. Y.; Zhou, J. H.; Reetz, M. T. Catalytic Asymmetric
Reduction of Difficult-to-Reduce Ketones: Triple Code Saturation
Mutagenesis of Alcohol Dehydrogenase. ACS Catal. 2016, 6, 1598−
1605.
(17) Zhao, J.; Kardashliev, T.; Ruff, A. J.; Bocola, M.; Schwaneberg,
U. Lessons from Diversity of Directed Evolution Experiments by an
8345
ACS Catal. 2018, 8, 8336−8345