2
70
F. Ero g˘ lu et al. / Journal of Organometallic Chemistry 695 (2010) 267–270
by titration prior to use [41]. Phenyl arenesulfonates 2a–e were
prepared by the published procedures using arenesulfonyl chlo-
rides and phenol and were confirmed by melting points, IR and
Acknowledgment
We thank the University Research Fund Grant No. BAP 2007-10-
05-09 for financial support.
1
H NMR spectroscopy [25,33,42–44] as follows:
3.3. C
6
H SO OC
5 2 6
H
5
2a
References
Mp 34–35 °C (lit. [44] mp 34–35 °C); IR (KBr) V cmꢀ1: 1618,
[1] M.S. Simpkins, Sulfones in Organic Synthesis, Pergamon Press, Oxford, 1993.
[
2] P. Page, Organosulfur Chemistry, Academic Press, New York, 1998.
1
1
489, 1384 (SO
2
), 1170 (SO
2
), 619 (S–O); H NMR (400 MHz, CDCl
3
)
[3] M.S. Mitchell, Biological Interaction of Sulfur Compounds, CRC Press, Florida,
1996.
d ppm: 7.82 (2H, d, J = 7.2 Hz), 7.66 (1H, t, J = 7.6 Hz), 7.52 (2H, t,
J = 7.6 Hz), 7.23–7.31 (3H, m), 6.97 (2H, d, J = 7.2 Hz).
[
4] S. Oaie, T. Okuyama, Organic Sulfur Chemistry: Biochemical Aspects, CRC Press,
Florida, 1992.
[
5] R.C. Larock, Comprehensive Organic Transformations. A Guide to Functional
Group Preparations, Wiley, New York, 1999.
3
.4. 4-CH
3 6 4 2 6 5
C H SO OC H 2b
[
[
6] C.M. Rayner, Contemp. Org. Synth. 2 (1995) 409.
7] B.J. Wakefield, Organomagnesium Methods in Organic Synthesis, Academic
Press, New York, 1995 (Chapter 13.2).
Mp 50–53 °C (lit. [33] mp 76 °C, lit. [25] 93–94 °C, lit. [44] 96–
ꢀ1
[8] B.J. Wakefield, Organolithium Methods, Academic Press, London, 1990
(Chapter 12.3).
[
[10] W.E. Baachers, Can. J. Chem. 54 (1976) 3056.
11] A.I. Meyers, A. Nebay, H.W. Adrekers, I.R.J. Politzer, Am. Chem. Soc. 91 (1969)
63.
12] H. Gilman, N.J. Beaber, C.H.J. Meyers, Am. Chem. Soc. 47 (1925) 2047.
13] A. Meijere, F. Diederich (Eds.), Metal Catalyzed Cross Coupling Reactions,
Wiley, Chichester, 2004 (Chapter 1).
14] B.H. Lipshutz, S. Sengupta, Org. React. 41 (1992) 135.
15] N. Krause (Ed.), Modern Organocopper Chemistry, Wiley-VCH, Weinheim,
2001.
9
7 °C); IR (KBr) V cm : 1597, 1510, 1355 (SO
2
), 1182 (SO
) d ppm: 7.70 (2H, d, J = 8.4 Hz),
.24–7.31 (5H, m), 7.03 (2H, d, J = 7.2 Hz), 2.44 (3H, s).
2
), 810
1
(
S–O); H NMR (400 MHz, CDCl
3
9] P. Sun, L. Wang, Y. Zhang, Tetrahedron Lett. 38 (1997) 5549.
7
[
7
3
3 6 4 2 6
.5. 3-CH C H SO OC H5. 2c
[
[
Oil form, IR (KBr) V cmꢀ1: 1618, 1489, 1384 (SO
19 (S–O); H NMR (400 MHz, CDCl
2
2
), 1170 (SO ),
[
[
1
6
3
) d ppm: 7.65 (1H, s), 7.60
(
7
1H, d, J = 6.8 Hz), 7.43 (1H, d, J = 7.4 Hz), 7.37 (1H, t, J = 7.3 Hz),
.22–7.29 (3H, m), 6.97 (2H, d, J = 7.2 Hz), 2.37 (3H, s).
[
[
16] R.J.K. Taylor, Organocopper Reagents, Oxford University Press, Oxford, 1994.
17] E. Erdik, Organozinc Reagents in Organic Synthesis, CRC Press, Florida, 1996
(
Chapter 7).
[
[
18] P. Knochel, P. Jones (Eds.), Organozinc Reagents. A Practical Approach, Oxford
University Press, Oxford, 1999.
19] Z. Rappoport, I. Marek (Eds.), Patai’s the Chemistry of Organozinc Compounds,
Wiley, Chichester, 2007.
3
3 3 6 4 2 6 5
.6. 4-(CH ) CC H SO OC H 2d
Mp 50–55 °C, IR (KBr) V cmꢀ1: 1618, 1488, 1384 (SO
), 1170
) d ppm: 7.76 (2H, d,
2
1
(
SO
2
), 619 (S–O); H NMR (400 MHz, CDCl
3
[20] G.A. Silverman, P.E. Rakita (Eds.), Handbook of Grignard Reagents, Marcel
Dekker, New York, 1996 (Chapter 29).
[
[
J = 8.4 Hz), 7.53 (2H, d, J = 8.4 Hz), 7.24–7.31 (3H, m), 7.01 (2H, d,
J = 7.2 Hz), 1.34 (9H, s).
21] D. Zim, Y.R. Lando, J. Dupon, A.L. Monteiro, Org. Lett. 3 (2001) 3049.
22] D.H. Burns, J.D. Miller, H.K. Chan, H.-D.J. Delaney, Am. Chem. Soc. 119 (1997)
2125.
[
[
[
23] C.-H. Cho, M. Sun, K. Park, Bull. Korean Chem. Soc. 26 (2005) 1410.
24] C.-H. Cho, M. Sun, Y.-S. Sen, C.-B. Kim, K.J. Park, Org. Chem. 70 (2005) 1482.
25] C.-H. Cho, H.-S. Yun, K.J. Park, Org. Chem. 68 (2003) 3017.
3
3 2 6 5
.7. 4-CH OSO OC H 2e
Mp 60–63 °C (lit. [44] 62–63 °C), IR (KBr) V cmꢀ1: 1592, 1495,
), 670 (S–O); 1H NMR (400 MHz, CDCl
369 (SO ), 1158 (SO ) d
[26] E. Erdik, T. Da sß kapan, Synth. React. Inorg. Metal-Org. Comp. 25 (1995) 1517.
[27] E. Erdik, F. Ero g˘ lu, Synth. React. Inorg. Metal-Org. Comp. 30 (2000) 955.
[
1
2
2
3
28] I.M. Gordon, H. Maskill, M.F. Ruasse, Chem. Soc. Rev. 18 (1989) 123.
ppm: 7.73 (2H, d, J = 8.4 Hz), 7.23–7.31 (3H, m), 6.98 (2H, d,
J = 7.2 Hz), 6.96 (2H, d, J = 8.0 Hz), 3.88 (3H, s).
[29] M.J. Pregel, E.J. Dunn, E.J. Buncel, Am. Chem. Soc. 113 (1991) 3545. and
references cited therein.
[
30] I.-H. Um, S.-J. Lee, J.-J. Kim, D.-S. Kwon, Bull. Korean Chem. Soc. 15 (1994) 473.
and references cited therein.
Kinetic procedure for the reaction of phenylmagnesium bro-
mide 1a with phenyl arenesulfonates 2a–e: The kinetics were fol-
lowed by measuring concentration of remaining phenyl
arenesulfonate by GC analysis. Phenyl arenesulfonate, toluene
and internal standard were thermostated at 90 °C in a jacketed
two necked reaction vessel of approximately 25 ml capacity
equipped with a reflux condenser and a magnetic stirrer. THF solu-
tion of phenylmagnesium bromide was added rapidly to initiate
the reaction. Aliquots (7–13) were withdrawn from the homoge-
neous solution at 15 min intervals by syringe and were added to
[31] S.D. Yoh, J.-H. Park, D.-Y. Cheong, J.-H. Park, Y.-D. Lee, K.-T.J. Howang, Phys.
Org. Chem. 12 (1998) 319. and references cited therein..
[
32] S. Thea, C. Carpanelli, G. Cevasco, Eur. J. Org. Chem. 2001 (2001) 151. and
references cited therein.
[
33] J.H. Choi, B.C. Lee, H.W. Lee, I.J. Lee, Org. Chem. 67 (2002) 1277.
[34] E. Erdik, F. Ero g˘ lu, Cent. Eur. J. Chem. 6 (2008) 237.
[
[
35] N.S. Isaacs, Physical Organic Chemistry, Longman, Harlow, 1987 (Chapter 4).
36] H. Yanataka, N. Miyano, T.J. Hanafusa, Org. Chem. 56 (1991) 2573. and
references cited therein.
[37] E. Erdik, Ö. Ömür, Appl. Organomet. Chem. 19 (2005) 887.
[
38] E. Erdik, F. Ero g˘ lu, D.J. Kâhya, Phys. Org. Chem. 18 (2005) 950.
[
39] P. Zuman, R.C. Patel, Techniques in Organic Reaction Kinetics, Wiley, New York,
4
a vial containing a quenching solution of aqueous NH Cl for hydro-
1984 (Chapter 3.7).
lysis and diethyl ether. The vial was capped and shaken. Extraction
of the remaining phenyl arenesulfonate and products sulfone and
phenol was found to be essentially quantitative. The ethereal phase
was analyzed by GC analysis. Generally self consistent data could
be obtained for 2 or 3 half lives. Reproducibility of the rate con-
stants was generally ±5%.
[40] J. Leonard, B. Lygo, G. Procter, Advanced Practical Organic Chemistry, Blackie,
London, 1995.
[
[
41] C.H. Watson, J.F.J. Eastham, Organomet. Chem. 9 (1967) 167.
42] F. Drahovzol, D. Klaman, Monatsh 82 (1951) 452.
[43] R.S.J. Tipson, Org. Chem. 9 (1944) 235.
[
44] B.S. Nader, C.E. Povlowski, C.L. Powell, C.F. O’Brien, M.P. Arrington, Ind. Eng.
Chem. Res. 34 (1995) 981.