Organic Letters
Letter
Scheme 4. Plausible Reaction Mechanism of
Oxyphosphorylation
REFERENCES
■
(1) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105,
2329.
(2) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400.
(3) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
(4) Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 7075.
(5) Gao, Y.; Wang, G.; Chen, L.; Xu, P.; Zhao, Y.; Zhou, Y.; Han, L.-B. J.
Am. Chem. Soc. 2009, 131, 7956.
(6) Peng, H.; Xi, Y.; Ronaghi, N.; Dong, B.; Akhmedov, N. G.; Shi, X. J.
Am. Chem. Soc. 2014, 136, 13174.
(7) Yang, Y.; Dong, W.; Guo, Y.; Rioux, R. M. Green Chem. 2013, 15,
3170.
(8) Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28.
(9) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem.
Soc. 2013, 135, 11481.
(10) Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524.
(11) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83,
1733.
(Scheme 4). Single-electron transfer from iron(II) species to
HP(O)(OR)2 in the presence of molecular oxygen forms
dialkyl phosphonate cation radical 7.40,41 Triethylamine
deprotonates this cation radical 7 to produce dialkyl phosphonyl
radical 8,42 which attacks alkyne to result radical 9. Cu(II)-
(•OOH) species was generated from Cu(I) under dioxygen
atmosphere (with protonated Et3N). The formed radical 9 trap
Cu(II)−(•OOH) to form hydroperoxide species 10, which is
eventually transformed into the desired product 3.
In summary, a novel Cu/Fe-co-catalyzed oxyphosphorylation
of alkynes or alkynyl carboxylic acids with H-phosphonate has
been developed to produce β-ketophosphonates, important
intermediates in the Horner−Wadsworth−Emmons (HWE)
reaction as well as key intermediates for the synthesis of many
biological active compounds in the synthetic community. By
employing inexpensive catalysts (copper and iron salts) and
using dioxygen as both the oxidant and reactant, our trans-
formation is both sustainable and practical. Our mechanistic
studies enable the tentative assignment of a catalytic cycle in
which the oxygen in the carbonyl group of β-ketophosphonate
originates from both molecular oxygen and water. Experiments
aimed at further elucidating the reaction mechanism as well as
demonstrating the synthetic application of our reaction are
underway in our laboratory.
(12) Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87.
(13) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
(14) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995,
117, 2931.
́ ́
́ ́
ez, M. A.; Vargas, S.; Suarez, A.; Alvarez, E.; Pizzano, A. Adv.
(15) Chav
Synth. Catal. 2011, 353, 2775.
(16) Ryglowski, A.; Kafarski, P. Tetrahedron 1996, 52, 10685.
(17) Palacios, F.; Ochoa de Retana, A. M.; Alonso, J. M. J. Org. Chem.
2006, 71, 6141.
(18) Murai, M.; Nakamura, M.; Takai, K. Org. Lett. 2014, 16, 5784.
(19) Maloney, K. M.; Chung, J. Y. L. J. Org. Chem. 2009, 74, 7574.
(20) Somu, R. V.; Boshoff, H.; Qiao, C.; Bennett, E. M.; Barry, C. E.;
Aldrich, C. C. J. Med. Chem. 2005, 49, 31.
(21) Li, X.; Hu, G.; Luo, P.; Tang, G.; Gao, Y.; Xu, P.; Zhao, Y. Adv.
Synth. Catal. 2012, 354, 2427.
(22) Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
(23) Wei, W.; Ji, J.-X. Angew. Chem., Int. Ed. 2011, 50, 9097.
(24) Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578.
(25) Bialy, L.; Waldmann, H. Angew. Chem., Int. Ed. 2005, 44, 3814.
́
(26) Baumgartner, T.; Reau, R. Chem. Rev. 2006, 106, 4681.
(27) Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc.
2004, 126, 5080.
(28) Jia, W.; Jiao, N. Org. Lett. 2010, 12, 2000.
(29) Hu, J.; Zhao, N.; Yang, B.; Wang, G.; Guo, L.-N.; Liang, Y.-M.;
Yang, S.-D. Chem.Eur. J. 2011, 17, 5516.
ASSOCIATED CONTENT
* Supporting Information
■
(30) Ranjit, S.; Duan, Z.; Zhang, P.; Liu, X. Org. Lett. 2010, 12, 4134.
(31) Park, J.; Park, E.; Kim, A.; Park, S.-A.; Lee, Y.; Chi, K.-W.; Jung, Y.
H.; Kim, I. S. J. Org. Chem. 2011, 76, 2214.
S
General experimental procedures and spectroscopic data (1H
NMR, 13C NMR, EPR, and HRMS) for the corresponding
products. This material is available free of charge via the Internet
(32) Priebbenow, D. L.; Becker, P.; Bolm, C. Org. Lett. 2013, 15, 6155.
(33) Zhang, W.-W.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2010, 75,
5259.
(34) Hu, G.; Gao, Y.; Zhao, Y. Org. Lett. 2014, 16, 4464.
(35) Li, X.; Yang, F.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 992.
(36) Zhao, D.; Gao, C.; Su, X.; He, Y.; You, J.; Xue, Y. Chem. Commun.
2010, 46, 9049.
(37) Chen, X.; Li, X.; Chen, X.; Qu, L.; Chen, J.; Sun, K.; Zhi-Dong Liu,
Z.; Bi, W.; Xia, Y.; Wu, H.; Zhao, Y. Chem. Commun. 2015, 51, 3846.
(38) Wu, Y.; Liu, L.; Yan, K.; Xu, P.; Gao, Y.; Zhao, Y. J. Org. Chem.
2014, 79, 8118.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
∥M.Z. and M.C. contributed equally to this work.
Notes
(39) Leca, D.; Fensterbank, L.; Laco
2005, 34, 858.
̂
te, E.; Malacria, M. Chem. Soc. Rev.
The authors declare no competing financial interest.
(40) Tayama, O.; Nakano, A.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J.
Org. Chem. 2004, 69, 5494.
(41) Kagayama, T.; Nakano, A.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2006,
8, 407.
(42) Zhou, Y.-B.; Yin, S.-F.; Gao, Y.-X.; Zhao, Y.-F.; Goto, M.; Han, L.-
B. Angew. Chem., Int. Ed. 2010, 49, 6852.
ACKNOWLEDGMENTS
■
We are grateful for financial support from the National Science
Foundation of China (21202049), the Recruitment Program of
Global Experts (1000 Talents Plan) and Fujian Hundred Talents
Plan, National Key Basic Research Program of China (Grant No.
2013CB921800), the “Strategic Priority Research Program (B)”
of the CAS (Grant No. XDB01030400), and the Program for
Innovative Research Team of Huaqiao University.
D
Org. Lett. XXXX, XXX, XXX−XXX