2
456
SIEMANN ET AL.
ANTIMICROB. AGENTS CHEMOTHER.
ring attached to the sulfonyl group (segment A) establishes a
favorable contact with the carboxylate carbon atom of the zinc
binding side chain of Asp120 (81). Furthermore, an interesting
interaction is present between this ring and a water molecule
which acts as an H-bond donor to the carboxylate group of
Asp120 (81). This water molecule is oriented so as to serve as
an H-bond donor to the face of the aromatic ring of the aryl
sulfonamide portion of the inhibitor. This specific interaction
may also partly explain the diminution in inhibitory potency
observed with compounds of the para-halogen series in the
order I Ն Br Ͼ Cl Ͼ F, since the electron density in the ring
system and, hence, the H-bond acceptor strength would be
increasingly diminished in inhibitors of the same series.
In summary, the models presented in this study, although
hypothetical, do provide some insights into possible specific
interactions between sulfonyl hydrazones and the enzyme
which help rationalize the observed structure-activity relation-
ship at a molecular level. These insights may provide the basis
for the development of more potent inhibitors of IMP-1.
of thioester and thiol inhibitors of IMP-1 metallo--lactamase. Bioorg. Med.
Chem. Lett. 9:2549–2554.
4. Hammond, G. G., J. L. Huber, M. L. Greenlee, J. B. Laub, K. Young, L. L.
Silver, J. M. Balkovec, K. D. Pryor, J. K. Wu, B. Leiting, D. L. Pompliano,
and J. H. Toney. 1999. Inhibition of IMP-1 metallo--lactamase and sensi-
tization of IMP-1-producing bacteria by thioester derivatives. FEMS Micro-
biol. Lett. 179:289–296.
15. Hussain, M., A. Carlino, M. J. Madonna, and J. O. Lampen. 1985. Cloning
and sequencing of the metallothioprotein -lactamase II gene of Bacillus
cereus 569/H in Escherichia coli. J. Bacteriol. 164:223–229.
6. Knowles, J. R. 1985. Penicillin resistance: the chemistry of -lactamase
inhibition. Acc. Chem. Res. 18:97–104.
7. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of
the head of bacteriophage T4. Nature 227:680–685.
18. Laraki, N., N. Franceschini, G. M. Rossolini, P. Santucci, C. Meunier, E. de
Pauw, G. Amicosante, J. M. Fr `e re, and M. Galleni. 1999. Biochemical char-
acterization of the Pseudomonas aeruginosa 101/1477 metallo--lactamase
IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43:
902–906.
9. Laraki, N., M. Galleni, I. Thamm, M. L. Riccio, G. Amicosante, J. M. Fr `e re,
and G. M. Rossolini. 1999. Structure of In31, a blaIMP-containing Pseudo-
monas aeruginosa integron phyletically related to In5, which carries an un-
usual array of gene cassettes. Antimicrob. Agents Chemother. 43:890–901.
0. Lim, H. M., J. J. Pene, and R. W. Shaw. 1988. Cloning, nucleotide sequence,
and expression of the Bacillus cereus 5/B/6 -lactamase II structural gene. J.
Bacteriol. 170:2873–2878.
1
1
1
1
2
2
1. Livermore, D. M., and N. Woodford. 2000. Carbapenemases: a problem in
waiting? Curr. Opin. Microbiol. 3:489–495.
ACKNOWLEDGMENTS
2
2. Matagne, A., A. Dubus, M. Galleni, and J.-M. Fr `e re. 1999. The -lactamase
cycle: a tale of selective pressure and bacterial ingenuity. Nat. Prod. Rep.
This work was supported by the Natural Sciences and Engineering
Research Council of Canada.
1
6:1–19.
2
3. Materon, I. C., and T. Palzkill. 2001. Identification of residues critical for
metallo--lactamase function by codon randomization and selection. Protein
Sci. 10:2556–2565.
We are indebted to Gilles Lajoie, Dyanne Brewer, and Amanda
Doherty-Kirby of the Department of Chemistry, University of Water-
loo (currently at the University of Western Ontario, London, Ontario,
Canada), for ESI MS measurements and Souzan Armstrong for pre-
liminary studies concerning the stability of metallo--lactamases under
assay conditions. We also thank Moreno Galleni for providing the
plasmid used in this study as well as Matthew D. R. Brown and
Nicholas J. Taylor for crystallographic data on tosylhydrazone.
24. Mollard, C., C. Moali, C. Papamicael, C. Damblon, S. Vessilier, G. Amico-
sante, C. J. Schofield, M. Galleni, J. M. Fr `e re, and G. C. Roberts. 2001.
Thiomandelic acid, a broad spectrum inhibitor of zinc -lactamases: kinetic
and spectroscopic studies. J. Biol. Chem. 276:45015–45023.
5. Nagano, R., Y. Adachi, H. Imamura, K. Yamada, T. Hashizume, and H.
Morishima. 1999. Carbapenem derivatives as potential inhibitors of various
2

-lactamases, including class B metallo--lactamases. Antimicrob. Agents
Chemother. 43:2497–2503.
REFERENCES
2
6. Nagano, R., Y. Adachi, T. Hashizume, and H. Morishima. 2000. In vitro
antibacterial activity and mechanism of action of J-111,225, a novel 1-
methylcarbapenem, against transferable IMP-1 metallo--lactamase produc-
ers. J. Antimicrob. Chemother. 45:271–276.
27. O’Callaghan, C. H., A. Morris, S. M. Kirby, and A. H. Shingler. 1972. Novel
method for detection of -lactamases by using a chromogenic cephalosporin
substrate. Antimicrob. Agents Chemother. 1:283–288.
1
2
. Ambler, R. P. 1980. The structure of -lactamases. Philos. Trans. R. Soc.
London B Biol. Sci. 289:321–331.
. Ambler, R. P., M. Daniel, J. Fleming, J.-M. Hermoso, C. Pang, and S. G.
Waley. 1985. The amino acid sequence of the zinc-requiring -lactamase II
from the bacterium Bacillus cereus 569. FEBS Lett. 189:207–211.
. Arakawa, Y., N. Shibata, K. Shibayama, H. Kurokawa, T. Yagi, H. Fujiwara,
and M. Goto. 2000. Convenient test for screening metallo--lactamase-pro-
ducing gram-negative bacteria by using thiol compounds. J. Clin. Microbiol.
3
28. Page, M. I., and A. P. Laws. 1998. The mechanism of catalysis and the
inhibition of -lactamases. Chem. Commun. 1609–1617.
3
8:40–43.
29. Paul-Soto, R., R. Bauer, J. M. Fr `e re, M. Galleni, W. Meyer-Klaucke, H.
Nolting, G. M. Rossolini, D. de Seny, M. Hernandez-Valladares, M. Zeppe-
4
5
6
7
. Bounaga, S., A. P. Laws, M. Galleni, and M. I. Page. 1998. The mechanism
of catalysis and the inhibition of the Bacillus cereus zinc-dependent -lacta-
mase. Biochem. J. 331:703–711.
2
ϩ
zauer, and H.-W. Adolph. 1999. Mono- and binuclear Zn --lactamase.
Role of the conserved cysteine in the catalytic mechanism. J. Biol. Chem.
274:13242–13249.
. Bounaga, S., M. Galleni, A. P. Laws, and M. I. Page. 2001. Cysteinyl peptide
inhibitors of Bacillus cereus zinc -lactamase. Bioorg. Med. Chem. 9:503–
30. Payne, D. J., W. Du, and J. H. Bateson. 2000. -Lactamase epidemiology and
the utility of established and novel -lactamase inhibitors. Exp. Opin. Inves-
tig. Drugs 9:247–261.
31. Payne, D. J., J. H. Bateson, B. C. Gasson, T. Khushi, D. Proctor, S. C.
Pearson, and R. Reid. 1997. Inhibition of metallo--lactamase by a series of
thiol ester derivatives of mercaptophenylacetic acid. FEMS Microbiol. Lett.
157:171–175.
32. Payne, D. J., J. H. Bateson, B. C. Gasson, D. Proctor, T. Khushi, T. H.
Farmer, D. A. Tolson, D. Bell, P. W. Skett, A. C. Marshall, R. Reid, L.
Ghosez, Y. Combret, and J. Marchand-Brynaert. 1997. Inhibition of metallo-
-lactamase by a series of mercaptoacetic acid thiol ester derivatives. Anti-
microb. Agents Chemother. 41:135–140.
33. Prosperi-Meys, C., G. Llabres, D. de Seny, R. Paul-Soto, M. Hernandez-
Valladares, N. Laraki, J. M. Fr `e re, and M. Galleni. 1999. Interaction be-
tween class B -lactamases and suicide substrates of active-site serine -lac-
tamases. FEBS Lett. 443:109–111.
5
10.
. Bush, K., C. Macalintal, B. A. Rasmussen, V. J. Lee, and Y. Yang. 1993.
Kinetic interaction of tazobactam with -lactamases from all major struc-
tural classes. Antimicrob. Agents Chemother. 37:851–858.
. Concha, N. O., C. A. Janson, P. Rowling, S. Pearson, C. A. Cheever, B. P.
Clarke, C. Lewis, M. Galleni, J. M. Fr `e re, D. J. Payne, J. H. Bateson, and
S. S. Abdel-Meguid. 2000. Crystal structure of the IMP-1 metallo -lacta-
mase from Pseudomonas aeruginosa and its complex with a mercaptocar-
boxylate inhibitor: binding determinants of a potent, broad-spectrum inhib-
itor. Biochemistry 39:4288–4298.
8
9
. Cornish-Bowden, A. 1974. A simple graphical method for determining the
inhibition constants of mixed, uncompetitive and non-competitive inhibitors.
Biochem. J. 137:143–144.
. Cricco, J. A., and A. J. Vila. 1999. Class B -lactamases: the importance of
being metallic. Curr. Pharm. Des. 5:915–927.
1
1
0. Dixon, M. 1953. The determination of enzyme inhibitor constants. Biochem.
J. 55:170–171.
1. Galleni, M., J. Lamotte-Brasseur, G. M. Rossolini, J. Spencer, O. Dideberg,
J. M. Fr `e re, et al. 2001. Standard numbering scheme for class B -lactama-
ses. Antimicrob. Agents Chemother. 45:660–663.
34. Quiroga, M. I., N. Franceschini, G. M. Rossolini, G. Gutkind, G. Bonfiglio,
L. Franchino, and G. Amicosante. 2000. Interactions of cefotetan and the
metallo--lactamases produced in Aeromonas spp. and in vitro activity. Che-
motherapy 46:177–183.
35. Rasmussen, B. A., and K. Bush. 1997. Carbapenem-hydrolyzing -lactama-
ses. Antimicrob. Agents Chemother. 41:223–232.
36. Saladini, M., D. Iacopino, and L. Menabue. 2000. Metal(II) binding ability of
a novel N-protected amino acid. A solution-state investigation on binary and
ternary complexes with 2,2Ј-bipyridine. J. Inorg. Biochem. 78:355–361.
37. Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypep-
1
2. Goto, M., T. Takahashi, F. Yamashita, A. Koreeda, H. Mori, M. Ohta, and
Y. Arakawa. 1997. Inhibition of the metallo--lactamase produced from
Serratia marcescens by thiol compounds. Biol. Pharm. Bull. 20:1136–1140.
3. Greenlee, M. L., J. B. Laub, J. M. Balkovec, M. L. Hammond, G. G. Ham-
mond, D. L. Pompliano, and J. H. Epstein-Toney. 1999. Synthesis and SAR
1