Page 5 of 7
Journal of the American Chemical Society
good prospects in the detection and degradation of
chlorophenol.
(9) Natalio, F.; Andre, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.;
1
2
3
4
5
6
7
8
9
Wever, R.; Tremel, W., Vanadium pentoxide nanoparticles mimic
vanadium haloperoxidases and thwart biofilm formation. Nat.
Nanotech. 2012, 7, 530-5.
CONCLUSIONS
In summary, we firstly proposed that MOF-818 has efficient
catechol oxidase-like activity with good specificity. MOF-818
can catalyze the oxidation of catechol to the corresponding o-
quinones but shows no peroxidase activity. The influence of
reaction conditions on the catalyst was systematically
investigated. Different from the previously reported catechol
oxidase nanozymes, MOF-818 catalyzed the oxidation of o-
(10) André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.;
Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W., V2O5
Nanowires with an Intrinsic Peroxidase-Like Activity. Adv. Funct.
Mater. 2011, 21, 501-509.
(11) Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M.,
Oxidase-like activity of polymer-coated cerium oxide nanoparticles.
Angew. Chem. Int. Ed. 2009, 48, 2308-12.
(12) Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu,
J., Multicopper Laccase Mimicking Nanozymes with Nucleotides as
Ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352-1360.
(13) Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H.
C., Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic
frameworks with ultrahigh stability as biomimetic catalysts. Angew.
Chem. Int. Ed. 2012, 51, 10307-10.
2 2 2
diphenols and produced H O . In the present work, O was
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
necessary and played the role to convert Cu(I) into Cu(II)
during the recycling. Moreover, by mimicking the active
center of natural catechol oxidase, MOF-818 exhibited
specificity and higher catalytic ability than that of the catechol
oxidase nanozymes previously reported.
(14) Wang, J.; Huang, R.; Qi, W.; Su, R.; Binks, B. P.; He, Z.,
Construction of a bioinspired laccase-mimicking nanozyme for the
degradation and detection of phenolic pollutants. Appl. Catal. B
Environ. 2019, 254, 452-462.
(15) Cheng, H.; Zhang, L.; He, J.; Guo, W.; Zhou, Z.; Zhang, X.;
Nie, S.; Wei, H., Integrated Nanozymes with Nanoscale Proximity for
in Vivo Neurochemical Monitoring in Living Brains. Anal. Chem.
ASSOCIATED CONTENT
The Supporting Information is available free of charge.
Experimental details, Figures S1−S17, Tables S1-S2, and
additional references.
2
016, 88, 5489-97.
16) Qin, L.; Wang, X.; Liu, Y.; Wei, H., 2D-Metal-Organic-
AUTHOR INFORMATION
Corresponding Author
(
Framework-Nanozyme Sensor Arrays for Probing Phosphates and
Their Enzymatic Hydrolysis. Anal. Chem. 2018, 90, 9983-9989.
*
dongsj@ciac.ac.cn, *fangyx@ciac.ac.cn.
(17) Wang, H.; Li, P.; Yu, D.; Zhang, Y.; Wang, Z.; Liu, C.; Qiu,
Author Contributions
H.; Liu, Z.; Ren, J.; Qu, X., Unraveling the Enzymatic Activity of
Oxygenated Carbon Nanotubes and Their Application in the
Treatment of Bacterial Infections. Nano Lett. 2018, 18, 3344-3351.
(18) Fan, K.; Xi, J.; Fan, L.; Wang, P.; Zhu, C.; Tang, Y.; Xu, X.;
Liang, M.; Jiang, B.; Yan, X.; Gao, L., In vivo guiding nitrogen-
doped carbon nanozyme for tumor catalytic therapy. Nat Commun
§
§
Minghua Li and Jinxing Chen contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
2
018, 9, 1440.
19) Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C.,
(
This work is supported by the National Natural Science
Foundation of China (No. 21675151, 21705145 and 21721003)
and the Ministry of Science and Technology of China (No.
2016YFA0203203).
Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking
Gold Nanoparticles. ACS Nano 2010, 4, 7451-7458.
(20) Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A.,
Catalytically Synthesized Prussian Blue Nanoparticles Defeating
Natural Enzyme Peroxidase. J. Am. Chem. Soc. 2018, 140, 11302-
11307.
(21) Jiao, X.; Song, H.; Zhao, H.; Bai, W.; Zhang, L.; Lv, Y., Well-
redispersed ceria nanoparticles: Promising peroxidase mimetics for
REFERENCES
(1) Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.;
Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X., Intrinsic
peroxidase-like activity of ferromagnetic nanoparticles. Nat.
Nanotech. 2007, 2, 577-83.
(2) Kotov, N. A., Inorganic Nanoparticles as Protein Mimics.
Science 2010, 330, 188-189.
H
2
O
2
and glucose detection. Anal. Methods 2012, 4, 3261-3267.
(22) Ge, C.; Fang, G.; Shen, X.; Chong, Y.; Wamer, W. G.; Gao,
X.; Chai, Z.; Chen, C.; Yin, J. J., Facet Energy versus Enzyme-like
Activities: The Unexpected Protection of Palladium Nanocrystals
against Oxidative Damage. ACS Nano 2016, 10, 10436-10445.
(3) Wei, H.; Wang, E., Nanomaterials with enzyme-like
characteristics (nanozymes): next-generation artificial enzymes.
Chem. Soc. Rev. 2013, 42, 6060-93.
(23) Jalilov, A. S.; Nilewski, L. G.; Berka, V.; Zhang, C.;
Yakovenko, A. A.; Wu, G.; Kent, T. A.; Tsai, A. L.; Tour, J. M.,
Perylene Diimide as a Precise Graphene-like Superoxide Dismutase
Mimetic. ACS Nano 2017, 11, 2024-2032.
(
4) Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.;
Wei, H., Nanomaterials with enzyme-like characteristics
nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev.
019, 48, 1004-1076.
5) Huang, Y.; Ren, J.; Qu, X., Nanozymes: Classification,
(
2
(24) Mu, J.; Zhang, L.; Zhao, M.; Wang, Y., Catalase mimic
property of Co
application as a calcium sensor. ACS Appl. Mater. Interfaces 2014, 6,
090-8.
25) Chen, J.; Huang, L.; Wang, Q.; Wu, W.; Zhang, H.; Fang, Y.;
3 4
O nanomaterials with different morphology and its
(
Catalytic Mechanisms, Activity Regulation, and Applications. Chem.
Rev. 2019, 119, 4357-4412.
7
(
(6) Yuan, Y.; Yang, Y.; Faheem, M.; Zou, X.; Ma, X.; Wang, Z.;
Dong, S., Bio-inspired nanozyme: a hydratase mimic in a zeolitic
imidazolate framework. Nanoscale 2019, 11, 5960-5966.
Meng, Q.; Wang, L.; Zhao, S.; Zhu, G., Molecularly Imprinted Porous
Aromatic Frameworks Serving as Porous Artificial Enzymes. Adv.
Mater. 2018, 30, e1800069.
(7) Comotti, M.; DellaꢀPina, C.; Falletta, E.; Rossi, M., Aerobic
Oxidation of Glucose with Gold Catalyst: Hydrogen Peroxide as
Intermediate and Reagent. Adv. Synth. Catal. 2006, 348, 313-316.
(26) Jiang, D.; Ni, D.; Rosenkrans, Z. T.; Huang, P.; Yan, X.; Cai,
W., Nanozyme: new horizons for responsive biomedical applications.
Chem. Soc. Rev. 2019, 48, 3683-3704.
(27) Sharma, T. K.; Ramanathan, R.; Weerathunge, P.;
Mohammadtaheri, M.; Daima, H. K.; Shukla, R.; Bansal, V.,
Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold
nanoparticles for kanamycin detection. Chem. Commun. 2014, 50,
(8) Yu, C. J.; Chen, T. H.; Jiang, J. Y.; Tseng, W. L., Lysozyme-
directed synthesis of platinum nanoclusters as a mimic oxidase.
Nanoscale 2014, 6, 9618-24.
1
5856-9.
ACS Paragon Plus Environment