Journal of the American Chemical Society
ARTICLE
vessel was cooled in an ice bath and slowly depressurized. The
’ AUTHOR INFORMATION
1
product mixture was analyzed by GC and H NMR.
Hydrogenation of LA or GVL with Complex 4 as the
Corresponding Author
leitner@itmc.rwth-aachen.de; klankermayer@itmc.rwth-aachen.
de
0
Catalyst. Where applicable, N-butyl-N -(4-sulfobutyl)imidazolium
p-toluenesulfonate (4.3 mg, 5.0 μmol) was placed in the glass liner of a
10 mL stainless steel reactor. The high-pressure reactor was repeatedly
evacuated and flushed with argon; then complex 4 (3.9 mg, 5.0 μmol)
dissolved in degassed LA (0.51 g, 5.0 mmol) or GVL (0.5 g, 5.0 mmol)
was transferred via syringe. The reactor was pressurized with a predeter-
mined amount of hydrogen to adjust a pressure of 100 bar after heating to
the appropriate reaction temperature. The mixture was stirred at the stated
reaction temperature for the given time. After the reaction the vessel was
cooled in an ice bath and slowly depressurized. The product mixture was
analyzed by GC.
’
ACKNOWLEDGMENT
This work was supported by the Cluster of Excellence “Tailor
Made Fuels from Biomass” (TMFB), which is funded by the
Excellence Initiative of the German federal and state govern-
ments to promote science and research at German universities.
We are grateful for generous allocation of computer time by the
Centre for Computing and Communication (RZ) of RWTH
Aachen University. We thank Mrs. Ines Bachmann-Remy for the
acquisition of the 600 MHz NMR spectra.
Synthesis of Carbonyldihydrido(1,1,1-tris(diphenylphos-
phinomethyl)ethane)ruthenium(II) (4). A glass liner of a 10 mL
stainless steel high-pressure reactor was loaded with Ru(acac) (1; 100
3
mg, 0.25 mmol, 1 equiv) and TriPhos (2; 174.9 mg, 0.27 mmol,
’
REFERENCES
(1) Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.;
1.1 equiv) and the liner was equipped with a magnetic stirrer bar and
transferred into the corresponding reactor. The atmosphere was chan-
ged to argon, and propanal (2.5 mL) was added. The reactor was
pressurized with 120 bar of hydrogen and stirred for 20 h at 150 °C. The
reactor was cooled to 0 °C, and the pressure was released into a rubber
balloon. The product mixture was transferred into a Schlenk flask and
ethanol (1 mL) was added. The solution was filtered off, and the solid
was washed with ethanol (1 mL) twice to yield the product (4) as light
yellow powder (166.3 mg, 0.21 mmol, 84%). RuC H O MW: 785.14
Cairney, J.; Eckert, C. A.; Frederick, W. J., Jr.; Hallett, J. P.; Leak, D. J.;
Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T.
Science 2006, 311, 484.
(
2) Kamm, B.; Kamm, M.; Gruber, P. R.; Kromus, S. In Biorefineries
—
Industrial Processes and Products. Status Quo and Future Directions;
Kamm, B., Gruber, P. R., Kamm, M., Eds.; Wiley-VCH: Weinheim,
Germany, 2006; Vol. 1, p 3.
(3) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
1
5 21
1
3
g/mol. H NMR (600 MHz, CD Cl , 25 °C): δ 7.68 (t, 8 H, J = 7.8
Hz, arom), 7.32 (t, 4 H, J = 8.7 Hz, arom), 7.17 (t, 2 H, J = 7.2 Hz,
2
2
HH
(
4) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106,
3
3
HH
HH
4044.
arom), 7.06ꢀ7.14 (m, 8 H, H-12, arom), 7.02 (m, 8 H, arom), 2.31
(
5) Top Value-Added Chemicals from Biomass ꢀ Results of Screening
3
2
PH HH 2
(
dd, 2 H, J = 15.1 Hz, J = 6.5 Hz, CH equatorial), 2.20 (dd, 2 H,
for Potential Candidates from Sugars and Synthesis Gas; Werpy, T.;
Petersen, G., Eds.; U.S. Department of Energy: Washington, DC, 2004,
Vol. 1.
(6) Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12, 539.
(7) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.;
Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.
(8) Van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C.
J. J. Mol. Catal. A: Chem. 2003, 206, 185.
3
2
3
JPH = 15.1 Hz, J = 6.5 Hz, CH equatorial), 2.13 (d, 2 H, J = 8.2 Hz,
HH
2
PH
3
CH axial), 1.52 (s, 3 H, CH ), ꢀ7.30 ppm. (dd, 2 H, J = 18.3 Hz, 50.2
2
3
PH
31
3
Hz, RuꢀH). P NMR (242.9 MHz, CD Cl , 25 °C): δ 34.5 (t, 1 P, J
=
2
2
PP
3
13
3
1.2 Hz, P-axial), 26.7 ppm (d, 2 P, JPP = 31.2 Hz, P-equatorial). C NMR
(
1
150.1 MHz, CD Cl
28.4, 127.8, 127.5, 38.8, 38.4, 35.0, 33.5 ppm.
2
2
, 25 °C): δ 209.5, 139.8, 138.0, 132.4, 131.1, 128.6,
Reaction of Carbonyldihydrido(1,1,1-tris-(diphenylphos-
phinomethyl)ethane)ruthenium(II) (4) with Levulinic Acid.
(
9) Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz,
A.; Yamamoto, H., Eds. Springer, Heidelberg, Germany, 1999.
(
(
In an NMR tube complex 4 (15.5 mg, 21 μmol) was dissolved in CD Cl
2
2
10) Hara, Y.; Wada, K. Chem. Lett. 1991, 553.
11) Mehdi, H.; F ꢀa bos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horv ꢀa th,
(0.7 mL). Levulinic acid (4.0 mg, 34 μmol) was added, and the mixture
was shaken for 30 s. The color of the solution changed from light yellow
1
I. T. Top. Catal. 2008, 48, 49.
to orange within the first 10 min. After 15 min the first H NMR was
1
(12) Ohkuma, T.; Noyori, R. In Handbook of Homogeneous Hydro-
genation; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Weinheim,
Germany, 2007; Vol. 4, p 1105.
(
(
(
Commun. 2007, 3154.
(16) Rosi, L.; Frediani, M.; Frediani, P. J. Organomet. Chem. 2010,
695, 1314.
recorded and for the next 18 h H NMR were recorded hourly. m/z:
1
8
41.6 (calc: 842.2). H NMR (600 MHz, CD
2
Cl
2
, 25 °C): δ 7.96 (m, 2
H, arom), 7.80 (m, 2 H, arom) 7.56 (m, 2 H, arom), 7.32 (m, 1 H, arom),
13) Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
14) Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1998, 1367.
15) Nunez, A. A.; Eastham, G. R.; Cole-Hamilton, D. J. Chem.
7
1
.36 (m, 2 H, arom), 7.25 (m, 2 H, arom), 7.08 (m, 1 H, arom), 6.99 (m,
H, arom), 6.78 (m, 2 H, arom), 2.72 (m, 2 H, LA-CH ), 2.62 (m, 2 H,
2
LA-CH
2
), 2.48 (m, 1 H, TriPhos-CH
2
2
), 2.46 (m, 1 H, TriPhos-CH ),
2
.38 (m, 1 H, TriPhos-CH ), 2.37 (m, 1 H, TriPhos-CH ), 2.29 (m, 1 H,
2
2
TriPhos-CH ), 2.25 (s, 3 H, LA-CH ), 2.23 (m, 1 H, TriPhos-CH ),
2
3
2
2
.16 (m, 1 H, TriPhos-CH
2
), 1.59 (m, 3 H, TriPhos-CH
3
), ꢀ5.89
(17) Bianchini, C.; Meli, A.; Moneti, S.; Vizza, F. Organometallics
1998, 17, 2636.
(18) Bianchini, C.; Meli, A.; Moneti, S.; Oberhauser, W.; Vizza, F.;
3
3
3
ppm (ddd, 1 H,
JPaxH = 94.7 Hz, JPeqH = 19.7 Hz, JP H = 14.3
eq
31
Hz, RuꢀH). P NMR (242.9 MHz, CD Cl , 25 °C): δ 47.8 (dd, 1
2
2
3
3
3
Herrera, V.; Fuentes, A.; Sanchez-Delgado, R. A. J. Am. Chem. Soc. 1999,
P, JPP = 40.2 Hz, JPP = 19.0 Hz, P-equatorial), 19.0 (dd, 1 P, JPP = 40.2
3
3
3
1
21, 7071.
19) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F.
Coord. Chem. Rev. 1992, 120, 193.
20) Belkova, N. V.; Bakhmutova, E. V.; Shubina, E. S.; Bianchini, C.;
Peruzzini, M.; Bakhmutov, V. I.; Epstein, L. M. Eur. J. Inorg. Chem. 2000,
Hz, JPP = 28.9 Hz, P-equatorial), 4.4 ppm (dd, 1 P, JPP = 28.9 Hz, JPP
9.0 Hz, P-axial).
=
(
1
(
’
ASSOCIATED CONTENT
Supporting Information. Tables listing all calculated
2163.
S
b
(21) Bianchini, C.; Moneti, S.; Peruzzini, M.; Vizza, F. Inorg. Chem.
energies in hartrees and Cartesian coordinates for all structures
and the text giving the complete ref 54. This material is available
free of charge via the Internet at http://pubs.acs.org.
1
997, 36, 5818.
(22) Bakhmutov, V. I.; Bianchini, C.; Peruzzini, M.; Vizza, F.;
Vorontsov, E. V. Inorg. Chem. 2000, 39, 1655.
1
4357
dx.doi.org/10.1021/ja2034377 |J. Am. Chem. Soc. 2011, 133, 14349–14358