Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Conflicts of interest
DOI: 10.1039/C9CC05379D
There are no conflicts to declare.
4
(10 mg/mL)
Toluene
70 °C, 24 h
Notes and references
OCPUF@PDA (2)
OCPUF@PDA@Ni(NHC) (5)
1
J. J. W. Bakker, W. J. Groendijk, K. M. de Lathouder, F.
Kapteijn, J. A. Moulijn, M. T. Kreutzer and S. A. Wallin, Ind.
Eng. Chem. Res., 2007, 46, 8574.
(a) L. Giani, G. Groppi and E. Tronconi, Ind. Eng. Chem. Res.,
2005, 44, 4993; (b) J. T. Richardson, Y. Peng and D. Remue,
Appl. Catal. A, 2000, 204, 19; (c) M. Lacroix, P. Nguyen, D.
Schweich, C. Pham Huu, S. Savin-Poncet and D. Edouard,
Chem. Eng. Sci., 2007, 62, 3259.
Fig. 4
Covalent functionalization of OCPUF@PDA (2) with 4.
2
3
4
C. Duong-Viet, H. Ba, Z. El-Berrichi, J.-M. Nhut, M. J. Ledoux,
Y. Liu and C. Pham-Huu, New. J. Chem., 2016, 40, 4285.
X. Ou, F. Pilitsis, Z. Jiao, Y. Zhang, S. Xu, M. Jennings, Y. Yang,
S. F. Rebecca Taylor, A. Garforth, H. Zhang, C. Hardacre, Y.
Yan and X. Fan, Chem. Eng. J., 2019, 362, 53.
L. Feng, Y. Liu, Q. Jiang, W. Liu, K.-H. Wu, H. Ba, C. Pham-Huu,
W. Yang and D. Sheng Su, Catal. Today, 2019,
doi.org/10.1016/j.cattod.2019.02.046.
X. Jiao, X. Ou, J. Zhang and X. Fan, React. Chem. Eng., 2019,
4, 427.
H.-W. Engels, H.-G. Pirkl, R. Albers, R. W. Albach, J. Krause, A.
Hoffmann, H. Casselmann and J. Dormish, Angew. Chem. Int.
Ed., 2013, 52, 9422.
H. Lee, S. M. Dellatore, W. M. Miller and P. M. Messersmith,
Science, 2007, 318, 426.
(a) D. Edouard, V. Ritleng, L. Jierry and N. T. T. Chau-
Dalencon, WO 2016012689A2, 2016; (b) E. Pardieu N. T. T.
Chau, T. Dintzer, T. Romero, D. Favier, T. Roland, D. Edouard,
L. Jierry and V. Ritleng, Chem. Commun., 2016, 52, 4691.
Scheme 1. Hydrosilylation of benzaldehyde catalyzed by 4 and 5.
to efficiently catalyse the hydrosilylation of carbonyl
derivatives.18 Similarly than with DMAP-TES, 4 was grafted on
2 by condensation of its alkoxysilyl groups with the catechol
units of the PDA layer in toluene at 70 °C for 24 h (Fig. 4).
After characterization by SEM (Fig. S18), and assessment of
the nickel content by ICP-AES analyses of several samples of
OCPUF@PDA@Ni(NHC) (5) (4.24 g ± 0.49 g/kg, i.e.: 72.2 ± 8.3
mmol/kg), we carried out a brief catalytic study to establish
the possibility to also graft organometallic catalysts onto 2. For
that purpose, we investigated the catalytic activity of 5 (mass
adjusted to have 1 mol% of immobilized complex based on the
Ni content) for the hydrosilylation of benzaldehyde (0.04 M) in
THF at 25 °C with PhSiH3 (1.2 equiv.) as the hydrogen
source,17b and compared it to that of 4 (1 mol%) under similar
conditions (Scheme 1). After 22 h, 95% conversion to the silyl
ether was observed with 4 (TOF = 4.3 h-1) and 72% with 5 (TOF
= 3.3 h-1). This demonstrates the possibility to immobilize both
organo- and organometallic catalysts on OCPUF@PDA (2) and
thus to potentially access to a multitude of catalysts.
In summary, polydopamine has been used as an adhesive
layer on soft structured supports made of flexible
polyurethane open cell foams to covalently immobilize organo-
and organometallic catalysts through a silanization process.
This convergent grafting strategy, never reported onto PDA,
allows anchoring organo- and organometallic catalysts as long
as they are modified with suitable silane groups. This paves the
way to the access of a large panel of possible chemical
transformations. Furthermore, the ability of the mussel-
inspired coating to both bind tightly to the foam and form
strong covalent bonds with the molecular catalysts avoids
catalyst leaching into the medium. This property, combined to
the high chemical resistance of both the polyurethane foam
and the polydopamine layer, leads to easy-to-handle long-
living catalysts, as shown by the repeated uses of 3 and the
conservation of its mechanical properties. Thanks to its
lightweight, flexibility and low-pressure drop, such kind of soft
structured catalytic support thus appears as an ideal candidate
to design original flow chemistry2,4,19 or dynamic bed
reactors.17 This pioneering work, together with our previous
work that showed the possibility to also immobilize NPs,9
opens the way to a huge array of uses of 2 as a macroscopic
soft structured support for chemical engineering development.
5
6
7
8
9
10 V. Ball, I. Nguyen, M. Haupt, C. Arnoult, V. Toniazzo and D.
Ruch, J. Coll. Interf. Sci., 2011, 364, 359.
11 (a) L. Lefebvre, J. Kelber, L. Jierry, V. Ritleng and D. Edouard,
J. Environ. Chem. Eng., 2017, 5, 79; (b) D. Edouard, L.
Lefebvre, L. Jierry, V. Ritleng and J. Kelber, WO 2018020146
A1, 2018; (c) L. Lefebvre, J. Kelber, X. Mao, F. Ponzio, G.
Agusti, C. Vigier-Carrière, V. Ball, L. Jierry, V. Ritleng and D.
Edouard, Environ. Prog. Sustain. Energy, 2019, 38, 329.
12 O. Pop-Georgievski, D. Verreault, M.-O. Diesner, V. Proks, S.
Heissler, F. Rypáček and P. Koelsch, Langmuir, 2012, 28,
14273.
13 R. A. Zangmeister, T. A. Morris, and M. J. Tarlov, Langmuir,
2013, 29, 8619.
14 (a) H.-T. Chen, S. Huh, J. W. Wiench, M. Pruski and V. S.-Y.
Lin, J. Am. Chem. Soc., 2005, 127, 13305–13311; (b) N. A.
Brunelli, W. Long, K. Venkatasubbaiah and C. W. Jones, Top.
Catal., 2012, 55, 432.
15 W. E. Warren and A. M. Kryanik, J. Appl. Mech., 1997, 64,
787.
16 (a) G. Höfle, W. Steglich and H. Vorbriiggen, Angew. Chem.,
Int. Ed. Engl., 1978, 17, 569; (b) A. C. Spivey and S.
Arseniyadis, Angew. Chem. Int. Ed., 2004, 43, 5436.
17 Z.-C. Hu, R. A. Korus and K. E. Stormo, Appl. Microbio.
Biotech., 1993, 39, 289.
18 (a) L. P. Bheeter, M. Henrion, L. Brelot, C. Darcel, M. J.
Chetcuti, J.-B. Sortais and V. Ritleng, Adv. Synth. Catal., 2012,
354, 2619; (b) F. Ulm, A. I. Poblador-Bahamonde, S. Choppin,
S. Bellemin-Laponnaz, M. J. Chetcuti, T. Achard and V.
Ritleng, Dalton Trans., 2018, 47, 17134.
Pham-Huu, AIChE J., 2008, 53, 2823; (b) S. Josset, S.
Hajiesmailia, D. Begin, D. Edouard, C. Pham-Huu, M.-C. Lett,
N. Keller and V. Keller, J. Hazard. Mater., 2010, 175, 372.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins