Y. Hu, Y. Shao, S. Zhang et al.
Tetrahedron Letters 66 (2021) 152806
Declaration of Competing Interest
The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments
This work was financially supported by National Natural
Science Foundation of China (NNSFC, No. 21562038) for supporting
our research. The authors also thank Jiangsu Provincial Natural
Science Foundation (BK20161328) for financial support.
Appendix A. Supplementary data
Experimental details, mechanistic study and spectroscopic data
to this article can be found online. Supplementary data to this arti-
Scheme 4. Control experiments.
References
[1] For reviews of transition-metal enabled CꢀH bond activation, see: (a) Alberico,
D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174; (b) Lyons, T. W.; Sanford,
M. S. Chem. Rev. 2010, 110, 1147; (c) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015,
115, 8946; (d) Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev. 2017, 117, 9086.
[2] Recent examples of transition-metal enabled C-H bond activation: (a) Kumar, G.
S.; Chand, T.; Singh, D.; Kapur, M. Org. Lett. 2018, 20, 4934; (b) Ghosh, K.;
Nishii*, Y.; Miura, M. Org. Lett. 2020, 22, 3547; (c) Ran, Y.; Yang, Y.; You, H.; You,
J. ACS Catal. 2018, 8, 1796; (d) Li, G.; Hu, J.; Zeng, R.; Shi, D.-Q.; Zhao, Y. Org. Lett.
2018, 20, 2454; (e) Lv, N.; Chen, Z.; Liu, Y.; Liu, Z.; Zhang, Y. Org. Lett. 2018, 20,
5845; (f) Gholap, A.; Bag, S.; Pradhan, S.; Kapdi, A. R.; Maiti, D. ACS Catal. 2020,
10, 5347; (g) Zeng, X.; Yan, W.; Paeth, M.; Zacate, S. B.; Hong, P.-H.; Wang, Y.;
Yang, D.; Yang K.;, Yan, T.; Song, C.; Cao, Z.; Cheng, M.-J.; Liu, W. J. Am. Chem.
Soc. 2019, 141, 19941; (h) Shen, Z.; Huang, H.; Zhu, C.; Warratz, S.; Ackermann,
L. Org. Lett. 2019, 21, 571; (i) Lv, W.; Wen, S.; Liu, J.; Cheng, G. J. Org. Chem.
2019, 84, 9786.
[3] Selected reviews of radical CꢀH bond functionalization: (a) Liang, Y.-F.; Jiao, N.
Acc. Chem. Res. 2017, 50, 1640; (b) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang,
J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016; (c) Wang, H.; Gao, X.; Lv, Z.;
Abdelilah, T.; Lei, A. Chem. Rev. 2019, 119, 6769; (d) Chu, J. C. K.; Rovis, T.
Angew. Chem., Int. Ed. 2018, 57, 62.
Scheme 5. Proposed mechanism.
[4] Recent progress of radical sp3 C-H bond activation: (a) Yang, X.; Zhu, Y.; Xie, Z.;
Li, Y.; Zhang, Y. Org. Lett. 2020, 22, 1638; (b) Anand, D.; Sun, Z.; Zhou, L. Org.
Lett. 2020, 22, 2371; (c) Zhao, X.; Liang, S.; Fan, X.; Yang, T.; Yu, W. Org. Lett.
2019, 21, 1559; (d) Roque, J. B.; Kuroda, Y.; Jurczyk, J.; Xu, L.-P.; Ham, J. S.;
Göttemann, L. T.; Roberts, C. A.; Adpressa, D.; Saurí, J.; Joyce, L. A.; Musaev, D. G.;
Yeung, C. S.; Sarpong, R. ACS Catal. 2020, 10, 2929; (e) Liu, S.; Shen, T.; Luo, Z.;
Liu, Z.-Q. Chem. Commun., 2019, 55, 4027; (f) Wu, J.; Zhou, Y.; Zhou, Y.; Chiang,
C.-W.; Lei, A. ACS Catal. 2017, 7, 8320; (g) Prusinowski, A. F.; Twumasi, R. K.;
Wappes, E. A.; Nagib, D. A. J. Am. Chem. Soc. 2020, 142, 5429; (h) Tang, S.; Zeng,
L.; Lei, A. J. Am. Chem. Soc. 2018, 140, 13128 (i) Wang, H.; Zhang, D.; Bolm, C.
Angew. Chem., Int. Ed. 2018, 57, 5863; (j) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J.
Angew. Chem., Int. Ed. 2017, 56, 1960; (l) Liang, X.-A.; Niu, L.; Wang, S.; Liu, J.;
Lei, A. Org. Lett. 2019, 21, 2441; (m) Yuan, P.-F.; Zhang, Q.-B.; Jin, X.-L.; Lei, W.-
L.; Wu, L.-Z.; Liu, Q. Green Chem., 2018, 20, 5464; (n) Wang, H.; Li, Y.; Lu, Q.; Yu,
M.; Bai, X.; Wang, S.; Cong, H.; Zhang, H.; Lei, A. ACS Catal. 2019, 9, 1888; (o)
Wang, X.; Qiu, X.; Wei, J.; Liu, J.; Song, S.; Wang, W.; Jiao, N. Org. Lett. 2018, 20,
2632.
B. Then intermolecular H-abstraction occurs, followed by coupling
between intermediate C and dioxygen, affording the peroxide rad-
ical D. Due to the high concentration of AIBN, the peroxide species
are captured by radical A to deliver peroxide 5. In the case of
diphenylmethane, elimination of cyanohydrin directly provides
the product 2. If R group is methyl, NiBr2 coordinates with the per-
oxide 5 to accelerate the extrusion of cyanohydrin, and benzophe-
none 2 is yielded after the peroxide rearrangement. In the absence
of NiBr2, the rate of peroxide rearrangement is slow, and an alkoxy
radical E will be generated by homolysis of the peroxide interme-
diate 5. Then, the alkoxy radical undergoes radical rearrangement
to provide a more stable carbon-centered radical F, which is cap-
tured by dioxygen, resulting in the formation of intermediate G.
After the final b-fragmentation of intermediate G, phenyl benzoate
4 is afforded.
Conclusion
In summary, a functionalization of sp3 CAH and CAC bonds was
developed by AIBN/O2 catalyst system, synthesizing a series of
benzophenones under mild reaction conditions. In particular, this
reaction provides a new way to cleave relatively strong CAC bond
through the rearrangement of the generated peroxide intermedi-
ate, which are potentially useful for the study of CAC bond activa-
tion. Application of this catalyst system to other reactions together
with the mechanistic studies are still underway in our laboratory.
[8] Liu, L.; Wang, Z.; Fu, X.; Yan, C.-H. Org. Lett. 2012, 14, 5692; (b) Liu, P.-Y.; Zhang,
C.; Zhao, S.-C.; Yu, F.; Li, F.; He, Y.-P. J. Org. Chem. 2017, 82, 12786; (c) Teng, F.;
Yu, J.-T.; Zhou, Z.; Chu, H.; Cheng, J. J. Org. Chem. 2015, 80, 2822; (d) Xu, H.; Liu,
P.-T.; Li, Y.-H.; Han, F.-S. Org. Lett. 2013, 15, 3354; (e) Teng, F.; Yu, J.-T.; Yang, H.;
Jiang, Y.; Cheng, J. Chem. Commun., 2014, 50, 12139.
4