Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Ph
Ph
Conflicts of interest
There are no conflicts of interest to declare.
DOI: 10.1039/C9CC01970G
P
P
CoI2
+
Ph
Ph
D2O
Zn
D
CoILn
Zn(OD)2
+
H/D
H/D
3a(D)
E
D2O + Zn
Notes and references
1
D
CoIIILn OD
F
(a) A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107,
2411; (b) M. Fouche, L. Roone and A. G. M. Barrett, J. Org.
Chem., 2012, 77, 3060; (c) K. Radkowski, B. Sundararaju and
A. Fürstner, Angew. Chem. Int. Ed., 2013, 52, 355; (d) D.
Srimani, Y. Diskin-Posner, Y. Ben-David and D. Milstein,
Angew. Chem. Int. Ed., 2013, 52, 14131; (e) N. B. Johnson,
I.C. Lennon, P. H. Moran and J. A. Ramsden, Acc. Chem. Res.,
2007, 40, 1291; (f) G. C. Tron, T. Pirali, G. Sorba, F. Pagliai, S.
Busacca and A. A. Genazzani, J. Med. Chem. 2006, 49, 3033.
(a) H. Lindlar, Helv. Chim. Acta, 1952, 35, 446; (b) H. Lindlar
and R. Dubuis, Org. Synth., 1966, 46, 89.
(a) C. A. Brown and V. K. Ahuja, J. Org. Chem., 1973, 38,
2226; (b) B. M. Choudary, G. V. M. Sharma and P. Bharathi,
Angew. Chem. Int. Ed., 1989, 28, 465; Angew. Chem., 1989,
101, 506; (c) J. Brunet, P. Gallois and P. Caubere, J. Org.
Chem., 1980, 45, 1937; (d) J. C. Choi and N. M.Yoon,
Tetrahedron Lett., 1996, 37, 1057; (e) F. Alonso, I. Osante
and M. Yus, Tetrahedron, 2007, 63, 93.
(a) A. M. Kluwer, T. S. Koblenz, T. onischkeit, K. Woelk and C.
J. Elsevier, J. Am. Chem. Soc. 2005, 127, 15470; (b) R. Iwasaki,
E. Tanaka, T. Ichihashi, Y. Idemoto and K. Endo, J. Org.
Chem., 2018, 83, 13574; (c) M. Leutzsch, L. M. Wolf, P.
Gupta, M. Fuchs, W. Thiel, C. Farès and A. Fürstner, Angew.
Chem. Int. Ed. 2015, 54, 12431; (d) K. Tani, A. Iseki and T.
Yamagata, Chem. Commun., 1999, 1821; (e) R. Shen, T. Chen,
Y. Zhao, R. Qiu, Y. Zhou, S. Yin, X. Wang, M. Goto and L.-B.
Han, J. Am. Chem. Soc., 2011, 133, 17037; (f) R. Maazaoui, R.
Abderrahim, F.Chemla, F. Ferreira, A. Perez-Luna, and O.
Jackowski, Org. Lett. 2018, 20, 7544.
Ph
Ph
1a
D/H
[Co]
H/D
OD
H
[Co]
OD
H
D
G
(b)
2
3
Scheme 2: Plausible reaction mechanism
The effectiveness of the present stereoselective TH protocol
was further justified in the efficient synthesis of E-resveratrol
(Scheme 3). The semi-reduction of 1,3-dimethoxy-5-((4-
methoxyphenyl)ethynyl)benzene
(4)
furnished
the
corresponding E-alkene 5 in 84% isolated yield with 90:10 E/Z-
ratio. Finally, the synthesis of E-resveratrol was concluded
following the reported procedure.11
4
CoI2 (5 mol%)
dppe (6 mol%)
H3CO
H3CO
H3CO
H3CO
Zn (3 equiv)
OCH3
H2O (10 equiv)
MeCN, 60 oC, 12h
OCH3
4
5
84% isolated yield
1,3-dimethoxy-5-((4-
methoxyphenyl)ethy
nyl)benzene
BBr3
DCM, 0 oC-rt
HO
HO
OH
5
6
S.-M. Fu, N.-Y. Chen, X.-F. Liu, Z.-H. Shao, S.-P. Luo and Q. Liu,
J. Am. Chem. Soc., 2016, 138, 8588.
(a) C. Chen, Y. Huang, Z. Zhang, X,-Q. Dong and X. Zhang,
Chem. Commun., 2017, 53, 4612; (b) V. G. Landge, J.
Pitchaimani, S. P. Midya, M. Subaramanian, V. Madhu and B.
Ekambaram, Catal. Sci. Technol., 2018, 8, 428.
6
E-Resveratrol
82% yield
Scheme 3: Synthesis of E-resveratrol
Conclusions
In summary, we have developed a protocol for the semi-
hydrogenation of alkynes to the corresponding alkenes using
inexpensive Cobalt (II) iodide, Zinc and more cheap and green
water as the hydrogen source. We have also demonstrated the
tuning of Z to E-selectivity by changing the solvent with
addition of phosphine ligand dppe under the same catalytic
system. The applicability of the developed catalytic protocol to
a wide range of internal alkynes has also been investigated. In
most of the cases, the corresponding alkenes were observed in
good to excellent yields with excellent stereoselectivity. This
method is environmentally and economically more
advantageous over expensive transition metal catalysts for the
reduction of alkynes to alkenes and for the synthesis of 1,2-
dideuterioalkenes.
7
(a) E. Shirakawa, H. Otsuka and T. Hayashi, Chem. Commun.,
2005, 5885; (b) A. G. Campaña, R. E. Estévez, N. Fuentes, R.
Robles, J. M. Cuerva, E. Buñuel, D. Cárdenas and J. E. Oltra,
Org. Lett., 2007, 9, 2195; (c) J. Li and R.-M. Hua, Chem. Eur.
J., 2011, 17, 846; (d) T. Schabel, C. Belger, and B. Plietker,
Org. Lett., 2013, 15, 2858; (e) S. Rao and K. R. Prabhu, Chem.
Eur. J., 2018, 24, 13954; (f) B. M. Pierce, B. F. Simpson, K. H.
Ferguson and R. E. Whittaker, Org. Biomol. Chem., 2018, 16,
6659.
(a) F. Yang, J.-C. Chen, G. Shen, X.-X. Zhang and B.-M. Fan,
Chem. Commun., 2018, 54, 4963; (b) D.-D. Pu, Y.-Y. Zhou, F.
Yang, G. Shen, Y. Gao, W.-Q. Sun, R. Khan and B.-M. Fan, Org.
Chem. Front., 2018, 5, 3077; (c) D.-P. Zhang, R. Khan, F. Yang,
X.-X. Zhang, G. Shen, Y. Gao, R.-F. Fan, W.-Q. Sun, and B.-M.
Fan, Eur. J. Org. Chem., 2018, 3464; (d) G. Shen, J. Chen, D.
Xu, X. Zhang, Y. Zhou and B.-M. Fan, Org. Lett., 2019, 21,
1364.
8
9
C.-Q. Zhao, Y.-G. Chen, H. Qiu, L.Wei, P. Fang and T.-S. Mei.
Org. Lett., 2019, 21, 1412.
We are grateful to the National Natural Science Foundation of
China (21572198) and the Applied Basic Research Project of
Yunnan Province (2017FA004, 2018FB021), and Yunnan
Provincial Key Laboratory Construction Plan Funding of
Universities for their financial support.
10 P. Gandeepan and C.-H. Cheng, Acc. Chem. Res., 2015, 48,
1194.
11 (a) H. Wang, H. Zhou, S. Wang, C. Li and Y. Zhang, Jingxi
Huagong 2011, 28, 492. CAN 2011: 1173937; (b) Söderman,
S. C.; Schwan, A. L. J. Org. Chem. 2012, 77, 10978.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins