Journal of the American Chemical Society
Page 4 of 6
matched/mismatched cycloadditions may also be operative based
analyses. NMR (CHE-0619339) and MS (CHE-0443618)
1
2
3
4
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
3
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
5
56
57
58
59
60
on differential interactions of the chiral borate catalyst with both
enantiomers of diene 19.
facilities at Boston University are supported by the NSF. Work at
the BU-CMD is supported by R24GM111625.
In order to understand the greater preference for formation of
sanggenon
C
vs.
O
(cf. Scheme 4), and the higher
enantioselectivity observed for sanggenon C, we conducted
computational studies of dienophile complex 27 using and both
enantiomers of a simplified variant of the diene (19’, TMS instead
REFERENCES
of TBS groups) to analyze the interacting complex of reagents
29
engaging in Diels-Alder cycloaddition.13,
Simplified
cycloaddition models A and B are shown in Scheme 6 with the
lowest energy conformer of diene 19. It appears that cycloaddition
through model A is favored in comparison to the corresponding
model B using (R)-BINOL which results in greater amounts of
sanggenon C derivatives and therefore favored production of (2R,
3R) stereoisomers in the product mixture. Our preliminary
reaction assembly calculations 30 (See Supporting Information)
show that there are significant steric interactions between the
prenyl and phenyl group on the chalcone dienophile which are
likely responsible for the significantly increased energy in
assemblies related to model B. Based on the X-ray structure of
the chiral borate complex (cf. Scheme 5), we predicted that the
use of (R)-BINOL as catalyst should yield (3’’S, 4’’R, 5’’S) for
both sanggenons C and O. This prediction is in agreement with
absolute stereochemistry determinations reported by Nomura and
coworkers for the natural products.2b
In summary, we have achieved the first asymmetric syntheses
of the flavonoid Diels-Alder natural products sanggenons C and O.
The syntheses employ a Lewis acid-promoted double Claisen
rearrangement to construct the hydrobenzofuro[3,2-b]chromenone
core scaffold of sanggenon A and sanggenol F. The first catalytic
enantioselective [4+2] cycloadditions of 2′-hydroxychalcones
have been developed using BINOL-boron catalysis. The high
enantioselectivity and diastereoselectivity of this catalytic system
enabled a stereodivergent reaction of a chiral, racemic flavonoid
diene precursor to afford enantioenriched sanggenons C and O.
Preliminary calculations of the interactions of diene-dienophile
complexes support the stereochemical outcomes observed in
stereodivergent cycloadditions. Further studies on the chemistry
and biology of Diels-Alder natural products, as well as a complete
energetic profiling of the key stereodivergent RRM, are ongoing
and will be reported in due course.
(1) (a) Fukai, T.; Pei, Y.-H.; Nomura, T.; Xu, C.-Q.; Wu, L.-J.; Chen, Y.-
J. Phytochemistry 1998, 47, 273–280. (b) Shen, R.-C.; Lin, M.;
Phytochemistry 2001, 57, 1231–1235. (c) Shi, Y.-Q.; Fukai, T.; Sakagami,
H.; Chang, W.-J.; Yang, P.-Q.; Wang, F.-P.; Nomura, T. J. Nat. Prod.
2001, 64, 181–188.(d) Rollinger, J. M.; Bodensieck, A.; Seger, C.;
Ellmerer, E.; Bauer, R.; Langer, T.; Stuppner, H. Planta Med. 2005, 71,
399–405.
(2) (a) Nomura, T.; Fukai, T.; Hano, Y.; Uzawa, J. Heterocycles 1981, 16,
2141–2147. (b) Shi, Y. Q.; Fukai, T.; Ochiai, M.; Nomura, T.
Heterocycles 2001, 55, 13–20.
(3) (a) Hano, Y.; Suzuki, S.; Nomura, T.; Iitaka, Y. Heterocycles 1988, 27,
2315–2325. (b) Shi, Y.-Q.; Fukai, T.; Sakagami, H.; Chang, W.-J.; Yang,
P.-Q.; Wang, F.-P.; Nomura, T. J. Nat. Prod. 2001, 64, 181–188. (c)
Rollinger, J. M.; Bodensieck, A.; Seger, C.; Ellmerer, E. P.; Bauer, R.;
Langer, T.; Stuppner, H. Planta Med. 2005, 71, 399–405.
(4) Cong, H.; Porco, J.A. Jr., Org. Lett. 2012, 14, 2516–2519.
(5) (a) Qi, C.; Cong, H.; Cahill, K. J.; Muller, P.; Johnson, R. P.; Porco, J.
A. Jr., Angew. Chem. Int. Ed. 2013, 52, 8345–8348. (b) Han, J.; Li, X.;
Guan, Y.; Zhao, W.; Wulff, W. D.; Lei, X. Angew. Chem. Int. Ed. 2014,
53, 9257–9261. (c) For a review on prenylflavonoid Diels-Alder natural
products, see: Han, J.; Jones, A. X.; Lei, X. Synthesis 2015, 47, 1519–
1533.
(6) Shi, Y.-Q.; Fukai, T.; Nomura, T. Heterocycles 2001, 54, 639–645.
(7) For examples of divergent reactions on racemic mixtures, see: (a) Kerr,
M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876–8877. (b) Strand, D.;
Rein, T. Org. Lett. 2005, 7, 199–202. (c) Miller, L. C.; Ndungu, J. M.;
Sarpong, R. Angew. Chem. Int. Ed. 2009, 48, 2398–2402. (d) Lian, Y.;
Miller, L. C.; Born, S.; Sarpong, R.; Davies, H. M. L. J. Am. Chem. Soc.
2010, 132, 12422–12425. (e) Samanta, S.; Perera, S.; Zhao, C. G. J. Org.
Chem. 2010, 75, 1101–1106. (f) Langlois, J. B.; Alexakis, A. Angew.
Chem. Int. Ed. 2011, 50, 1877–1881; (g) Miller; L. C., Sarpong, R. Chem.
Soc. Rev. 2011, 40, 4550–4562.
(8) Nomura, T.; Fukai, T.; Hano, Y.; Uzawa, J. Heterocycles 1982, 17,
381–389.
(9) (a) Stang, E. M.; White, M. C. J. Am. Chem. Soc. 2011, 133, 14892–
14895. (b) Dong, S. W.; Qin, T.; Hamel, E.; Beutler, J. A.; Porco, J. A. J.
Am. Chem. Soc. 2012, 134, 19782–19787.
(10) Ngadjui, B. T.; Ayafor, J. F.; Bilon, A. E. N.; Sondengam, B. L.;
Connolly, J. D.; Rycroft, D. S. Tetrahedron 1992, 48, 8711–8724.
(11) Marié, J.-C.; Xiong, Y.; Min, G. K.; Yeager, A. R.; Taniguchi, T.;
Berova, N.; Schaus, S. E.; Porco, J. A. J. Org. Chem. 2010, 75, 4584–
4590.
(12) Williams, D. R.; Barner, B. A.; Nishitani, K.; Phillips, J. G. J. Am.
Chem. Soc. 1982, 104, 4708–4710.
(13) Please see the Supporting Information.
(14) Evans, D. A.; Rovis, T.; Kozlowski, M. C.; Tedrow, J. S. J. Am.
Chem. Soc. 1999, 121, 1994–1995.
(15) Shannon, R. D. Acta Cryst. 1976. A32, 751–767.
(16) For metal-size dependent reactivity of epoxides, see: Balthaser, B. R.;
Maloney, M. C.; Beeler, A. B.; Porco, J. A. Jr.; Snyder, J. K. Nature
Chem. 2011, 3, 969-973.
(17) (a) Trnka, T.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29. (b)
Hoveyda, A. H.; Zhugralin, A. R. Nature, 2007, 450, 243–251. (c) Scholl,
M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40,
2247–2250.
ASSOCIATED CONTENT
Supporting Information. Experimental procedures and
characterization data for all new compounds described herein,
including CIF files for compounds. This material is available free
AUTHOR INFORMATION
Corresponding Author
Author Contributions
‡C.Q. and Y.X. contributed equally to this paper.
Notes
The authors declare no competing financial interests.
(18) (a) Chandjai.A; Sharma, B. N. J. Org. Chem. 1974, 39, 1149–1152.
(b) Tan, W. F.; Li, W. D. Z.; Huang, C. S.; Li, Y. L.; Xing, Y. C. Synth.
Commun. 1999, 29, 3369–3377. (c) Sunderhaus, J. D.; McAfoos, T. J.;
Finefield, J. M.; Kato, H.; Li, S. Y.; Tsukamoto, S.; Sherman, D. H.;
Williams, R. M. Org. Lett. 2013, 15, 22–25.
(19) (a) Cong, H.; Becker, C. F.; Elliott, S. J.; Grinstaff, M. W.; Porco, J.
A., Jr. J. Am. Soc. Chem. 2010, 132, 7514–7518. (b) Qi, C.; Qin, T.;
Suzuki, D.; Porco, J.A. Jr., J. Am. Chem. Soc. 2014, 136, 3374–3377.
(20) Briegleb, G. Angew. Chem. 1964, 76, 326–341.
ACKNOWLEDGMENT
We thank the National Institutes of Health (GM-073855 and GM-
099920), Vertex Pharmaceuticals (graduate fellowship to C. Q.),
and AstraZeneca (graduate fellowship to H.C.) for research
support. We thank Dr. Jeffrey Bacon (Boston University) and
Matthew Benning (Bruker AXS) for X-ray crystal structure
ACS Paragon Plus Environment