ACS Catalysis
Letter
D-1a (>99% ee) with overall conversion of 86% and isolated
yield of 57% from 4 (Table 3).
(3) Prior, A. M.; Kim, Y.; Weerasekara, S.; Moroze, M.; Alliston, K.
R.; Uy, R. A. Z.; Groutas, W. C.; Chang, K.-O.; Hua, D. H. Bioorg. Med.
Chem. Lett. 2013, 23, 6317−6320.
To demonstrate the generality of our approach, using the
optimized conditions for the chemoenzymatic synthesis of L-
and D-1a, we employed a panel of substituted phenylboronic
acids 9b−k to afford L- and D-biarylalanine derivatives L- and D-
(
4) De Lombaert, S.; Fink, C. A.; Firooznia, F.; Hoyer, D. W.; Jeng,
A. Y. U.S. Patent 6,613,782 B2, September 2, 2003.
5) Roques, B.; Anne, C.; Turcaud, S.; Fournie-Zalunski, M.-C. U.S.
Patent 2004/0176333 A1, September 9, 2004.
6) Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.;
(
1
b−k in high yield and >99% ee (Table 3).
(
As an example of the practical relevance of these building
Sohma, Y.; Kanai, M. Angew. Chem., Int. Ed. 2014, 53, 1382−1385.
(7) Yang, B.; Lamb, M. L.; Zhang, T.; Hennessy, E. J.; Grewal, G.;
Sha, L.; Zambrowski, M.; Block, M. H.; Dowling, J. E.; Su, N.; Wu, J.;
Deegan, T.; Mikule, K.; Wang, W.; Kaspera, R.; Chuaqui, C.; Chen, H.
J. Med. Chem. 2014, 57, 9958−9970.
blocks, we exploited our chemoenzymatic approach to L-1d in
1
the synthesis of the DPP IV inhibitor 15 (Scheme 4) in 30%
overall yield from 3.
(
8) Sircar, J. C.; Mencel, J. J. U.S. Patent 2007/0105783 A1, May 10,
007.
9) (a) Asymmetric Synthesis and Application of α-Amino Acids;
Soloshonok, V. A., Izawa, K., Eds.; American Chemical Society:
Washington, DC, 2009; pp 2−417. (b) Groger, H.; Dietz, F. R.
Encyclopedia of Chemical Biology; John Wiley & Sons, Inc.: Weinheim,
008; pp 1−12. (c) Bommarius, A. S.; Schwarm, M.; Karlheinz, D.
Chimia 2001, 55, 50−59.
10) (a) Turner, N. J. Curr. Opin. Chem. Biol. 2011, 15, 234−240.
b) Heberling, M. M.; Wu, B.; Bartsch, S.; Janssen, D. B. Curr. Opin.
Scheme 4. Chemoenzymatic Synthesis of DPP IV Inhibitor
2
(
1
5
̈
2
(
(
Chem. Biol. 2013, 17, 250−260. (c) Louie, G. V.; Bowman, M. E.;
Moffitt, M. C.; Baiga, T. J.; Moore, B. S.; Noel, J. P. Chem. Biol. 2006,
1
3, 1327−1338. (d) Cooke, H. A.; Christianson, C. V.; Bruner, S. D.
Curr. Opin. Chem. Biol. 2009, 13, 460−468. (e) Wanninayake, U.;
Walker, K. D. J. Am. Chem. Soc. 2013, 135, 11193−11204.
(
In summary, we designed a green, efficient route to a range of
biarylalanines through the marriage of two enantiocomple-
mentary enzymatic transformations with a combinatorial
chemocatalytic coupling. The modular independence of the
bio- and chemocatalytic conversions shown here may be more
broadly applicable in the field of medicinal chemistry, allowing
similar expansion to the product range of other biocatalysts.
11) Weisshaar, B.; Jenkins, G. I. Curr. Opin. Plant Biol. 1998, 1,
2
(
51−257.
12) (a) Paizs, C.; Katona, A.; Retey, J. Chem. - Eur. J. 2006, 12,
2
739−2744. (b) De Lange, B.; Hyett, D. J.; Maas, P. J. D.; Mink, D.;
Van Assema, F. B. J.; Sereinig, M.; De Vries, A. H. M.; De Vries, J. G.
ChemCatChem 2011, 3, 289−292.
(
J. P.; Moore, B. S. Biochemistry 2007, 46, 1004−1012. (b) Wang, L.;
Gamez, A.; Archer, H.; Abola, E. E.; Sarkissian, C. N.; Fitzpatrick, P.;
Wendt, D.; Zhang, Y.; Vellard, M.; Bliesath, J.; Bell, S. M.; Lemontt, J.
F.; Scriver, C. R.; Stevens, R. C. J. Mol. Biol. 2008, 380, 623−635.
13) (a) Moffitt, M. C.; Louie, G. V.; Bowman, M. E.; Pence, J.; Noel,
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
2
c) Lovelock, S. L.; Lloyd, R. C.; Turner, N. J. Angew. Chem., Int. Ed.
014, 53, 4652−4656. (d) Lovelock, S. L.; Turner, N. J. Bioorg. Med.
Chem. 2014, 22, 5555−5557.
14) Vedha-Peters, K.; Gunawardana, M.; Rozzell, J. D.; Novick, S. J.
Figure S1, experimental section, and copies of spectra
(
(
J. Am. Chem. Soc. 2006, 128, 10923−10929. (b) Rozzell, D.; Novick, S.
AUTHOR INFORMATION
■
J. U.S. Patent WO 2006/113085 A2, October 26, 2006.
(
15) (a) Ganesamoorthy, S.; Shanmugasundaram, K.; Karvembu, R. J.
Mol. Catal. A: Chem. 2013, 371, 118−124. (b) Burda, E.; Hummel, W.;
Groger, H. Angew. Chem., Int. Ed. 2008, 47, 9551−9554.
(16) (a) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. J. Am. Chem. Soc.
*
Notes
̈
The authors declare no competing financial interest.
2
009, 131, 16346−16347. (b) Spicer, C. D.; Triemer, T.; Davis, B. G.
ACKNOWLEDGMENTS
This work was funded by the Biotechnology and Biological
Sciences Research Council (BBSRC) and Glaxo-SmithKline
J. Am. Chem. Soc. 2012, 134, 800−803.
(
■
17) Yamamoto, K.; Watanabe, M.; Ideta, K.; Mataka, S.; Thiemann,
T. Z. Naturforsch. B 2005, 60, 1299−1307.
18) Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J.
Am. Chem. Soc. 2006, 128, 6829−6836.
(
(
GSK) under the Strategic Longer and Larger (sLoLa) grant
initiative (ref BB/K00199X/1). N.J.W. was supported by the
European Union’s 7th Framework program FP7/2007-2013
under Grant Agreement No. 289646 (KYROBIO). We thank
the Royal Society for a Wolfson Research Merit Award (N.J.T.)
and Dr. Emma Jones from GSK.
REFERENCES
■
(
1) Qiao, L.; Baumann, C. A.; Crysler, C. S.; Ninan, N. S.; Abad, M.
C.; Spurlino, J. C.; DesJarlais, R. L.; Kervinen, J.; Neeper, M. P.;
Bayoumy, S. S.; Williams, R.; Deckman, I. C.; Dasgupta, M.; Reed, R.
L.; Huebert, N. D.; Tomczuk, B. E.; Moriarty, K. J. Bioorg. Med. Chem.
Lett. 2006, 16, 123−128.
(
2) Papst, S.; Noisier, A. F. M.; Brimble, M. A.; Yang, Y.; Krissansen,
G. W. Bioorg. Med. Chem. 2012, 20, 5139−5149.
5
413
ACS Catal. 2015, 5, 5410−5413