Please do not adjust margins
RSC Advances
DOI: 10.1039/C5RA17168G
ARTICLE
Journal Name
sites in SZ (see ESI†) – however in this case the interaction the distinction of their membership and the stipend received.
between SZ and starting materials, aldehyde and BIVA is grateful to CONACyT for her student fellowship.
nitromethane, is faster than the interaction between the
secondary amine and SZ. For these reasons, we consider that
Notes and references
the secondary amine is acting as a homogeneous component.
Moreover, it is known that under neutral conditions, the
equilibrium constant of the formation of nitronic acid from
1
J. Yao, N. Liu, L. Shi and X. Wang, Cata. Commun., 2015, 66,
126.
2
9
2
(a) S. Z. Mohamed Shamshuddin, Synlett, 2005, 361. (b) B. T.
Loveless, A. Gyanani and D. S. Muggli, Appl.Catal. B:
Environm., 2008, 84, 591.
nitromethane is very small. However, under acidic conditions
(
SZ), this equilibrium can be shifted to the formation of the
3
0
nitronic acid,
owing to the acid sites of material. These
3
4
(a) K. Arata, Green Chem., 2009, 11, 1719. (b) B. M. Reddy
and M. K. Patil, Chem. Rev. 2009, 109, 2185.
considerations suggest a cooperative role for SZ, in which the
material participates in the activation of the carbonyl group
(a) W. Li, Y. Ni, W. Liu, W. Xing and N. Xu, Korean J. Chem.
Eng., 2013, 30, 1222. (b) V. S. Marakatti, G. V. Shanbhag and
A. B. Halgeri, Appl. Catal. A: Gen., 2013, 451, 71. (c) C. X.
Hernandez-Reyes, D. Angeles-Beltran, L. Lomas-Romero, E.
Gonzalez-Zamora, R. Gavino, J. Cardenas, J. A. Morales-Serna
and G. E. Negron-Silva, Molecules, 2012, 17, 3359. (d) N. A.
Guerra-Navarro, L. N. Palacios-Grijalva, D. Angeles-Beltran,
G. E. Negron-Silva, L. Lomas-Romero, E. Gonzalez-Zamora, R.
Gavino-Ramirez and J. Navarrete-Bolanos, Molecules, 2011,
and nitromethane.
SZ
O
I
O
H
SZ
H
NO
2
SZ
2
g
N
H
16, 6561. (e) L. N. Palacios-Grijalva, D. Y. Cruz-Gonzalez, L.
SZ
Lomas-Romero, E. Gonzalez-Zamora, G. Ulibarri and G. E.
Negron-Silva, Molecules, 2009, 14, 4065. (f) G. E. Negron, L.
N. Palacios, D. Angeles, L. Lomas and R. Gavino, J. Braz.
Chem. Soc., 2005, 16, 490. (g) G. Negron, D. Angeles, L.
Lomas, A. Martinez, M. Ramirez and R. Martinez,
Heterocycles, 2004, 63, 367.
N
II
N
NO
2
H
5
6
(a) L. D. Sasiambarrena, L. J. Mendez, M. A. Ocsachoque, A.
S. Cánepa, R. D. Bravo, M. G. González, Catal. Lett., 2010,
III
1
38, 180. (b) C. R. Vera, C. L. Pieck, K. Shimizu and J. M.
Parera, Appl. Catal. A, 2002, 230, 137. (c) W. Stichert, F.
Schütch, S. Kuba and H. Knözinger, J. Catal., 2001, 198, 277.
(a) A. E.-A. A. Said, M. M. A. El-Wahab, M. A. El-Aal, J. Mol.
Catal. A: Chem., 2014, 394, 40. (b) A. Osatiashtiani, A. F. Lee,
D. R. Brown, J. A. Melero, G. Morales and K. Wilson, Catal.
SZ
O
O
SZ
SZ
N
N
O
O
Sci. Technol., 2014, 4, 333. (c) H. Yu, H. Fang, H. Zhang, B. Li
and F. Deng, Catal. Commun., 2009, 10, 920. (d) B. Li and R.
D. Gonzalez, Catal. Today, 1998, 46, 55.
Scheme 1 Proposed mechanism
7
8
9
P. Khajavi, A. A. Babaluo, A. Tavakoli, and A. Mirzaei, Ind.
Eng. Chem. Res., 2014, 53, 164.
C. D. Miranda, A. E. Ramírez, S. Gaona Jurado, C. R. Vera. J.
Mol. Catal. A: Chem. 2015, 398, 325.
Conclusions
In conclusion, we have developed a convenient protocol
for the synthesis of trans-β-nitrostyrenes through
(a) A. G. M. Barrett and G. G. Graboski, Chem Rev., 1986, 86
51. (b) A. G. M. Barrett, Chem. Soc. Rev., 1991, 20, 95.
0 R. S. Varma and G. W. Kabalka, Heterocycles, 1986, 24, 2645.
1 (a) S. Sarkar, K. Bera, S. Jalal and U. Jana, Eur. J. Org. Chem.,
013, 6055. (b) C. C. Ailveira, S. R. Mendes, G. M. Martins, S.
,
a
7
cooperative catalysis by employing sulfated zirconia with
secondary amines that directly influence the condensation
process between an aldehyde and nitromethane (Henry
reaction). Brønsted and Lewis catalytic acid sites present in the
material allowed for the direct activation of carbonyl groups by
the formation of an iminium ion. At the same time, SZ allows
for the formation of nitronic acid, which is the C-C bond
precursor. The efficiency and operational simplicity of this
protocol was demonstrated by the reuse of the material (ten
times) with very good yields, without the requirement of
reactivation at high temperatures.
1
1
2
C. Schösser and T. S. Kaufman, Tetrahedron, 2013, 69, 9076.
2 M. Tang, W. Zhang and Y. Kong, Org. Biomol. Chem., 2013,
11, 6250.
3 (a) H. M. Nanjundaswany and H. Abrahamse, Synth.
Commun., 2015, 45, 967-974. (b) Y.-C. Wang, Y.-Y. Xie, H.-E.
Qu, H.-S. Wang, Y.-M. Pan and F.-P. Huang, J. Org. Chem.,
2014, 79, 4463. (c) N. Mur Blanch, G. G. Chabot, L. Quentin,
D. Sherman S. Bourg and D. Dauzonne, Eur. J. Med. Chem.,
1
1
2
012, 54, 22.
1
4 R. G. Soengas, H. Rodriguez-Solla, A. M. S. Silva, R. Llavona
and F. A. Almeida Paz, J. Org. Chem., 2013, 78, 12831.
5 S.-R. Guo and Y.-Q Yuan, Synlett, 2015; 26, 1961
1
1
Acknowledgements
6 O. M. Berner, L. Tedeschi and D. Enders, Eur. J. Org. Chem.,
2
002, 1877.
The authors would like to thank Consejo Nacional de
Ciencia y Tecnología, CONACyT (project 181448) for financial
support. RGO, GENS, DAB, LLR, AGC, LVH and JAMS wish to
1
7 (a) L. S. Aitken, N. R. Arezki, A. Dell’Isola and A. J. A. Cobb,
Synthesis, 2013, 45, 2627. (b) R. Ballini and M. Petrini,
Tetrahedron, 2004, 60, 1017.
acknowledge the SNI (Sistema Nacional de Investigadores) for 18 (a) T. Naveen, S. Maity, U. Sharma and D. Maiti, J. Org. Chem.
2
013, 78, 5949. (b) S. Manna, S. Jana, T. Saboo, A. Maji and
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins