Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Published on Web 12/03/2004
Enantio- and Diastereoselective Michael Reaction of
1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a
Bifunctional Thiourea
Tomotaka Okino, Yasutaka Hoashi, Tomihiro Furukawa, Xuenong Xu, and
Yoshiji Takemoto*
Contribution from the Graduate School of Pharmaceutical Sciences, Kyoto UniVersity,
Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
Received September 16, 2004; E-mail: takemoto@pharm.kyoto-u.ac.jp
Abstract: We synthesized a new class of bifunctional catalysts bearing a thiourea moiety and an amino
group on a chiral scaffold. Among them, thiourea 1e bearing 3,5-bis(trifluoromethyl)benzene and
dimethylamino groups was revealed to be highly efficient for the asymmetric Michael reaction of
1,3-dicarbonyl compounds to nitroolefins. Furthermore, we have developed a new synthetic route for
(R)-(-)-baclofen and a chiral quaternary carbon center with high enantioselectivity by Michael reaction. In
these reactions, we assumed that a thiourea moiety and an amino group of the catalyst activates a nitroolefin
and a 1,3-dicarbonyl compound, respectively, to afford the Michael adduct with high enantio- and
diastereoselectivity.
Introduction
Jacobsen et al. found that chiral urea derivatives catalyzed the
Strecker reaction, Mannich reaction, hydrophosphonylation of
Urea and thiourea derivatives have been intensively inves-
tigated in the area of molecular recognition because of their
strong hydrogen bonding activity.1 They can be used to recog-
nize carboxylic acid,1a sulfonic acid,1b nitrate,1c etc., through
multihydrogen bondings. Recently, several groups reported that
urea and thiourea not only recognized organic compounds but
also activated them as an acid catalyst.2-4 Curran et al. reported
that addition of a urea derivative improved diastereoselectivity
of allylation of R-bromosulfoxide with allyltributylstannane.2b
Schreiner investigated the effect of urea derivatives on reactivity
and selectivity of Diels-Alder reaction of enones with
cyclopentadiene.2d,e Concerning enantioselective reactions,3,4
imines, and Pictet-Spengler reaction, affording the products
with high enantiomeric excess.4a-i Nagasawa et al. reported that
their chiral urea derivatives promoted Michael reaction of
pyrrolidine to R,â-unsaturated γ-lactone with low to moderate
ee.4j They also found that bis-thiourea catalyzed the Baylis-
Hillman reaction with up to 90% ee.4k Although both research
groups used urea derivatives as a simple acid, the activity of
ureas as acids is rather weaker than that of metallic Lewis acids.
Therefore, application of urea derivatives to enantioselective
reactions seems to be limited.2g
Michael reaction of nitroolefins represents a convenient access
to nitroalkanes that are versatile intermediates in organic
synthesis.5 The nitro functionality can be easily transformed into
amine,6 nitrile oxide,7 ketone or carboxylic acid,8 hydrogen,9
etc., providing a wide range of synthetically interesting com-
pounds. Although the catalytic asymmetric versions of this
reaction were achieved, most required metal catalysts or strict
reaction conditions.10-14 Recently, L-proline derivatives have
been reported to afford enantiomerically enriched Michael
adducts in good yield.15 To achieve catalytic enantioselective
Michael reaction into nitroolefins with thioureas, we designed
(1) (a) Kelly, T. R.; Kim, M. H. J. Am. Chem. Soc. 1994, 116, 7072-7080.
(b) Wilcox, C. S.; Kim, E.; Romano, D.; Kuo, L. H.; Burt, A. L.; Curran,
D. P. Tetrahedron 1995, 51, 621-634. (c) Linton, B. R.; Goodman, M.
S.; Hamilton, A. D. Chem.-Eur. J. 2000, 6, 2449-2455. (d) Etter, M. C.;
Urban˜czyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T. W. J. Am. Chem.
Soc. 1990, 112, 8415-8426.
(2) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. Tetrahedron Lett. 2003, 44, 2817-
2821. (b) Curran, D. P.; Kuo, L. H. J. Org. Chem. 1994, 59, 3259-3261.
(c) Curran, D. P.; Kuo, L. H. Tetrahedron Lett. 1995, 36, 6647-6650. (d)
Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217-220. (e) Wittkopp,
A.; Schreiner, P. R. Chem.-Eur. J. 2003, 9, 407-414. (f) Schreiner, P. R.
Chem. Soc. ReV. 2003, 32, 289-296. (g) Maher, D. J.; Connon, S. J.
Tetrahedron Lett. 2004, 45, 1301-1305.
(3) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672-12673. (b) Okino, T.; Nakamura, S.; Furukawa, T.; Takemoto, Y.
Org. Lett. 2004, 6, 625-627.
(4) (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-
4902. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2000, 39, 1279-1281. (c) Vachal, P.; Jacobsen, E. N. J. Am. Chem.
Soc. 2002, 124, 10012-10014. (d) Vachal, P.; Jacobsen, E. N. Org. Lett.
2000, 2, 867-870. (e) Su, J. T.; Vachal, P.; Jacobsen, E. N. AdV. Synth.
Catal. 2001, 343, 197-200. (f) Wenzel, A. G.; Jacobsen, E. N. J. Am.
Chem. Soc. 2002, 124, 12964-12965. (g) Wenzel, A. G.; Lalonde, M. P.;
Jacobsen, E. N. Synlett 2003, 1919-1922. (h) Joly, G. D.; Jacobsen, E. N.
J. Am. Chem. Soc. 2004, 126, 4102-4103. (i) Taylor, M. S.; Jacobsen, E.
N. J. Am. Chem. Soc. 2004, 126, 10558-10559. (j) Sohtome, Y.; Tanatani,
A.; Hashimoto, Y.; Nagasawa, K. Chem. Pharm. Bull. 2004, 52, 477-
480. (k) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K.
Tetrahedron Lett. 2004, 45, 5589-5592.
(5) For a review, see: Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org.
Chem. 2002, 1877-1894.
(6) (a) Beck, A. K.; Seebach, D. Chem. Ber. 1991, 124, 2897-2911. (b) Maeri,
R. E.; Heinzer, J.; Seebach, D. Liebigs Ann. 1995, 1193-1215. (c) Poupart,
M. A.; Fazal, G.; Goulet, S.; Mar, L. T. J. Org. Chem. 1999, 64, 1356-
1361. (d) Barrett, A. G. M.; Spilling, C. D. Tetrahedron Lett. 1988, 29,
5733-5734. (e) Lloyd, D. H.; Nichols, D. E. J. Org. Chem. 1986, 51,
4294-4295.
(7) Mukaiyama, T.; Hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339-5342.
(8) Pinnick, H. W. Org. React. 1990, 38, 655-792.
(9) Ono, N.; Miyake, H.; Kamimura, A.; Hamamoto, I.; Tamura, R.; Kaji, A.
Tetrahedron 1985, 41, 4013-4023.
(10) (a) Hayashi, T. Synlett 2001, 879-887. (b) Hayashi, T.; Senda, T.;
Ogasawara, M. J. Am. Chem. Soc. 2000, 122, 10716-10717.
9
10.1021/ja044370p CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 119-125
119