2492
Y.-S. Feng et al. / Tetrahedron Letters 51 (2010) 2489–2492
8681; (i) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397–7403; (j) Itoh,
10. Kabalka, G. W.; Pagni, R. M.; Hair, C. M. Org. Lett. 1999, 1, 1423–1425.
11. (a) Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, H. Synlett 2004, 1517–1520;
(b) Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Alikarami, M. Synlett
2005, 1101–1104; (c) Hosseinzadeh, R.; Tajbakhsh, M.; Alikarami, M. Synlett
2006, 2124–2126; (d) Hosseinzadeh, R.; Tajbakhsh, M.; Alikarami, M.
Tetrahedron Lett. 2006, 47, 5203–5205; (e) Hosseinzadeh, R.; Sarrafi, Y.;
Mohadjerani, M.; Mohammadpourmir, F. Tetrahedron Lett. 2008, 49, 840–843.
12. General experimental procedure. All reagents and solvents were pure analytical
grade materials purchased from commercial sources and were used without
further purification. The 1H and 13C NMR spectra were recorded, respectively,
in CDCl3 on a 300 MHz and 75 MHz instrument with TMS as internal standard.
TLC was carried out with 0.2 mm thick silica gel plates (GF254). The columns
were hand packed with silica gel 60 (200–300). All reactions were carried out
in a Schlenk tube equipped with a magnetic stir bar under N2 atmosphere.
A Schlenk tube was charged with CuI (0.1 mmol, 19 mg), KF/Al2O3 (2.5 equiv,
390 mg), and solid substrate, if present. Then liquid reagents (aryl or heteroaryl
halide, 1 mmol; thiol, 1.2 mmol), and solvent (2.5 ml) were added under N2.
The reaction vessel was closed and placed under stirring in a preheated oil bath
at 110 °C. The reaction mixture was stirred for 8 h. The resulting suspension
was cooled to room temperature and filtered through a pad of filter paper with
the help of 10 ml of ethyl acetate. The filtrate was concentrated and the residue
was purified by silica gel chromatography.
T.; Mase, T. Org. Lett. 2004, 6, 4587–4590; (k) Mispelaere-Canivet, C.; Spindler, J.
F.; Perrio, S.; Beslin, P. Tetrahedron 2005, 61, 5253–5259; (l) Fernández-
Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. Chem. Eur. J. 2006, 12, 7782–7796; (m)
Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128,
2180–2181; (n) Barbiéri, R. S.; Bellato, C. R.; Dias, A. K. C.; Massabni, A. C. Catal.
Lett. 2006, 109, 171–174; (o) Cai, L.; Cuevas, J.; Peng, Y. Y.; Pike, V. W.
Tetrahedron Lett. 2006, 47, 4449–4452.
4. (a) Zhang, Y.; Ngeow, K. N.; Ying, J. Y. Org. Lett. 2007, 9, 3495–3499; (b) Saxena, A.;
Kumar, A.; Mozumdar, S. Appl. Catal. A. 2007, 317, 210–215; (c) Jammi, S.; Barua,
P.; Rout, L.; Saha, P.; Punniyamurthy, T. Tetrahedron Lett. 2008, 49, 1484–1487.
5. (a) Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E. Tetrahedron Lett. 2000,
41, 1283–1286; (b) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2,
2019–2022; (c) Yee Kwong, F.; Buchwald, S. L. Org. Lett. 2002, 4, 3517–3520; (d)
Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803–2806; (e)
Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309–4312; (f) Wu, Y. J.;
He, H. Synlett 2003, 1789–1790; (g) Ley, S. V.; Thomas, A. W. Angew. Chem., Int.
Ed. 2003, 42, 5400–5449; (h) Deng, W.; Zou, Y.; Wang, Y. F.; Liu, L.; Guo, Q. X.
Synlett 2004, 1254–1258; (i) Deng, W.; Liu, L.; Guo, Q. X. Chin. J. Org. Chem.
2004, 2, 150–165; (j) Bates, C. G.; Saejueng, P.; Doherty, M. Q.; Venkataraman,
D. Org. Lett. 2004, 6, 5005–5008; (k) Zeni, G. Tetrahedron Lett. 2005, 46, 2647–
2651; (l) Chen, Y. J.; Chen, H. H. Org. Lett. 2006, 8, 5609–5612; (m) Zheng, Y.;
Du, X.; Bao, W. Tetrahedron Lett. 2006, 47, 1217–1220; (n) Zhu, D.; Xu, L.; Wu,
F.; Wan, B. Tetrahedron Lett. 2006, 47, 5781–5784; (o) Verma, A. K.; Singh, J.;
Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199–7202; (p) Ranu, B. C.; Saha, A.;
Jana, R. Adv. Synth. Catal. 2007, 349, 2690–2696; (q) Rout, L.; Sen, T. K.;
Punniyamurty, T. Angew. Chem., Int. Ed. 2007, 46, 5583–5586; (r) Lv, X.; Bao, W.
J. Org. Chem. 2007, 72, 3863–3867; (s) Carril, M.; SanMartin, R.; Domínguez, E.;
Tellitu, I. Chem. Eur. J. 2007, 13, 5100–5105; (t) Rout, L.; Saha, P.; Jammi, S.;
Punniyamurthy, T. Eur. J. Org. Chem. 2008, 4, 640–643; (u) Xu, H. J.; Zhao, X. Y.;
Deng, J.; Fu, Y.; Feng, Y. S. Tetrahedron Lett. 2009, 50, 434–437; (v) Xu, H. J.;
Zhao, X. Y.; Deng, J.; Fu, Y.; Feng, Y. S. Synlett 2008, 3063–3067; (w) Fukuzawa,
S.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K. Tetrahedron Lett. 2009, 50,
2374–2376; (x) Feng, Y. S.; Zhao, X. Y.; Wang, J. Y.; Zheng, F. Y.; Xu, H. J. Chin. J.
Chem. 2009, 27, 2423–2425; (y) Jiang, Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong, J.; Ma,
D. Org. Lett. 2009, 11, 5250–5253; (z) Xu, H. J.; Man, Q. S.; Lin, Y. C.; Li, Y. Y.;
Feng, Y. S. Chin. J. Org. Chem. 2010, 30, 9–22; (aa) Firouzabadi, H.; Iranpoor, N.;
Gholinejad, M. Adv. Synth. Catal. 2010, 352, 119–124.
(a) 1,4-Bis(phenylthio)benzene (Table 3, entry 1): 1H NMR (300 MHz, CDCl3) d
7.45–7.33 (m, 5H), 7.31 (s, 2H), 7.27 (d, J = 4.0 Hz, 2.1, 2H), 7.24 (d, J = 9.8 Hz,
6H). 13C NMR (75 MHz, CDCl3): d 135.12, 131.57, 131.28, 129.41, 127.50; (b)
1,4-Bis(m-toluenelthio)benzene (Table 3, entry 2): 1H NMR (300 MHz, CDCl3) d
7.24–7.12 (m, 9H), 7.07 (d, J = 7.1 Hz, 2H), 2.32 (s, 6H). 13C NMR (75 MHz,
CDCl3):
128.45, 21.42; (c) 1,4-Bis(p-toluenethio)benzene (Table 3, entry 3): 1H NMR
(300 MHz, CDCl3) d 7.35–7.22 (m, 4H), 7.13 (d, J = 6.5 Hz, 7H), 2.34 (s, 6H). 13
d 139.31, 135.13, 134.80, 132.29, 131.92, 131.13, 129.26, 128.79,
C
NMR (75 MHz, CDCl3): d 137.91, 135.56, 132.45, 131.12, 130.32, 21.26; (d) 1,4-
Bis(cyclohexylthio)benzene (Table 3, entry 4): 1H NMR (300 MHz, CDCl3) d 7.29
(s, 4H), 3.22–2.93 (m, 2H), 1.98 (d, J = 10.4 Hz, 4H), 1.77 (d, J = 5.2 Hz, 4H), 1.62
(d, J = 6.5 Hz, 2H), 1.47–1.07 (m, 10H). 13C NMR (75 MHz, CDCl3): d 133.75,
132.11, 46.74, 33.45, 26.02, 25.70–25.52; (e) 1,4-Bis(octylthio) benzene (Table
3, entry 5): 1H NMR (CDCl3, 300 MHz): d 7.23 (s, 4H), 2.88 (t, J = 7.3 Hz, 4H),
1.63 (m, J = 6.8 Hz, 4H), 1.40–1.26 (br m, 20H), 0.88 (t, J = 6.4 Hz, 6H). 13C NMR
(75 MHz, CDCl3): d 134.62, 129.85, 34.25, 32.50, 29.32, 29.29, 29.50, 22.84,
14.27.
6. Wong, Y. C.; Jayanth, T. T.; Cheng, C. H. Org. Lett. 2006, 8, 5613–5616.
7. (a) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880–2883;
(b) Correa, A.; Mancheño, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108–1117.
8. (a) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao, K. R. J. Org. Chem. 2009, 74, 3189;
(b) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org. Lett. 2009, 11, 1697.
9. (a) Yamawaki, J.; Ando, T.; Hanafusa, T. Chem. Lett. 1981, 1143–1146; (b) Yadav,
V. K.; Kapoor, K. K. Tetrahedron 1996, 52, 3659–3668; (c) Alloum, B. A.;
Villemin, D. Synth. Commun. 1989, 19, 2567–2571; (d) Kabalka, G. W.; Wang, L.;
Namboodiri, V.; Pagni, R. M. Tetrahedron Lett. 2000, 41, 5151–5154; (e) Blass, B.
E. Tetrahedron 2002, 58, 9301–9320.
13. Other studies also showed the importance of bases in Cu-catalyzed cross-
coupling reactions: (a) Liu, L.; Frohn, M.; Xi, N.; Dominguez, C.; Hungate, R.;
Reider, P. J. J. Org. Chem. 2005, 70, 10135–10138; (b) Zhang, S. L.; Liu, L.; Fu, Y.;
Guo, Q. X. Organometallics 2007, 26, 4546–4554; (c) Yang, C. T.; Fu, Y.; Huang, Y.
B.; Yi, J.; Guo, Q. X.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 7398–7401; (d) Feng,
Y. S.; Man, Q. S.; Pan, P.; Pan, Z. Q.; Xu, H. J. Tetrahedron Lett. 2009, 50, 2585–
2588; (e) Xu, H. J.; Zheng, F. Y.; Liang, Y. F.; Cai, Z. Y.; Feng, Y. S.; Che, D. Q.
Tetrahedron Lett. 2010, 51, 669–671.