8
K. PARVANAK BOROUJENI ET AL.
[17] Mahl, D.; Diendorf, J.; Ristig, S.; Greulich, C.; Li, Z. A.; Farle,
M.; Ko€ller, M.; Epple, M. Silver, gold, and Alloyed Silver–Gold
Nanoparticles: Characterization and Comparative Cell-biologic
Action. J. Nanopart. Res. 2012, 14, 1153–1155.
[18] Ranjani, M.; Sathishkumar, Y.; Lee, Y. S.; Jin Yoo, D.; Kim,
A. R.; Gnana Kumar, G. Ni–Co Alloy Nanostructures Anchored
on Mesoporous Silica Nanoparticles for Non-enzymatic Glucose
Sensor Applications. RSC Adv. 2015, 5, 57804–57814. DOI:
[19] Su, C. X.; Mouscadet, J. F.; Chiang, C. C.; Tsai, H. J.; Hsu, L. Y.
HIV-1 Integrase Inhibition of Biscoumarin Analogues. Chem.
Pharm. Bull. 2006, 54, 682–686.
[20] Kostova, I.; Momekov, G.; Zaharieva, M.; Karaivanova, M.
Cytotoxic Activity of New Lanthanum (III) Complexes of Bis-
Coumarins. Eur. J. Med. Chem 2005, 40, 542–551. DOI:
[21] Brooker, N. L.; Kuzimichev, Y.; Laas, J.; Pavlis, R. Evaluation of
Coumarin Derivatives as Anti-fungal Agents against Soil-borne
Fungal Pathogens. Commun. Agric. Appl. Biol. Sci. 2007, 72,
785–793.
[22] Kong, Y.; Fu, Y. J.; Zu, Y. G.; Chang, F. R.; Chen, Y. H.; Liu,
X. L.; Stelten, J.; Schiebel, H. M. Cajanuslactone, a New
Coumarin with Anti-bacterial Activity from Pigeon Pea
[Cajanus cajan (L.) Millsp.] Leaves. Food Chem 2010, 121,
[23] Hamdi, N.; Puerta, M. C.; Valerga, P. Synthesis, Structure,
Antimicrobial and Antioxidant Investigations of Dicoumarol
and Related Compounds. Eur. J. Med. Chem. 2008, 43,
[24] Carta, F.; Maresca, A.; Scozzafava, A.; Supuran, C. T. Novel
Coumarins and 2-thioxo-coumarins as Inhibitors of the
Tumor-associated Carbonic Anhydrases IX and XII. Bioorg.
Med. Chem. 2012, 20, 2266–2273. DOI: 10.1016/
[25] Monti, M.; Pinotti, M.; Appendino, G.; Dallocchio, F.; Bellini,
T.; Antognoni, F.; Poli, F.; Bernardi, F. Characterization of
Anti-coagulant Properties of Prenylated Coumarin Ferulenol.
Biochim. Biophys. Acta 2007, 1770, 1437–1440. DOI: 10.1016/
[26] Khan, K. M.; Iqbal, S.; Lodhi, M. A.; Maharvi, G. M.; Ullah, Z.;
Choudhary, M. I.; Rahman, A.-U.; Perveen, S. Biscoumarin:
New Class of Urease Inhibitors; Economical Synthesis and
Activity. Bioorg. Med. Chem. 2004, 12, 1963–1968. DOI:
[27] Kidwai, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi,
R. K.; Dey, S.; Singh, T. P. Molecular Iodine: A Versatile
Catalyst for the Synthesis of Bis (4-hydroxycoumarin) Methanes
in Water. J. Mol. Catal. A. Chem. 2007, 268, 76–81. DOI:
[28] Mehrabi, H.; Abusaidi, H. Synthesis of Biscoumarin and 3, 4-
dihydropyrano [c] chromene Derivatives Catalysed by Sodium
Dodecyl Sulfate (SDS) in Neat Water. J. Iran. Chem. Soc. 2010,
References
[1] Habashi, F. Alloys: Preparation, Properties, Applications, New
York: Wiley, 2008.
[2] Dorantes-Davila, J.; Pastor, G. M. Nanoalloys; Calvo, F. Eds.;
ꢀ
Elsevier Inc: Paris, 2013, 247–274.
[3] Roozmeh, S.; Mohseni, S.; Tehranchi, M. Study of
Magnetoimpedance Effect of Co-based Amorphous Ribbons
after Current Annealing at Various Kinds of Ambient Pressure.
J. Non-Cryst. Solids 2009, 355, 2653–2656. DOI: 10.1016/
[4] Chaturvedi, S.; Dave, P. N.; Shah, N. K. Applications of Nano-
catalyst in New Era. J. Saudi Chem. Soc 2012, 16, 307–325.
ꢀ
ꢀ
[5] Gonzalez, I.; De Jesus, J. C.; de Navarro, C. U.; Garcıa, M.
Effect of Cu on Ni Nanoparticles Used for the Generation of
Carbon Nanotubes by Catalytic Cracking of Methane. Catal.
[6] Klein, K. L.; Melechko, A. V.; Rack, P. D.; Fowlkes, J. D.;
Meyer, H. M.; Simpson, M. L. Cu–Ni Composition Gradient
for the Catalytic Synthesis of Vertically Aligned Carbon
Nanofibers. Carbon 2005, 43, 1857–1863. DOI: 10.1016/
[7] Wang, H. Y.; Lua, A. C. Methane Decomposition Using Ni–Cu
Alloy Nano-particle Catalysts and Catalyst Deactivation Studies.
Chem. Eng. J. 2015, 262, 1077–1089. DOI: 10.1016/
[8] Saw, E. T.; Oemar, U.; Tan, X. R.; Du, Y.; Borgna, A.; Hidajat,
K.; Kawi, S. Bimetallic Ni–Cu Catalyst Supported on CeO2 for
High-temperature Water–Gas Shift Reaction: Methane
Suppression via Enhanced CO Adsorption. J. Catal. 2014, 314,
[9] Liu, G. L.; Niu, T.; Cao, A.; Geng, Y. X.; Zhang, Y.; Liu, Y. The
Deactivation of Cu–Co Alloy Nanoparticles Supported on ZrO2
for Higher Alcohols Synthesis from Syngas. Fuel 2016, 176,
[10] Han, X.; Zhou, R.; Lai, G.; Zheng, X. Influence of Support and
Transition Metal (Cr, Mn, Fe, Co, Ni and Cu) on the
Hydrogenation of p-chloronitrobenzene over Supported
Platinum Catalysts. Catal. Today 2004, 93, 433–437. DOI:
[11] Xie, R.; Fan, G.; Yang, L.; Li, F. Hierarchical Flower-like Co–Cu
Mixed Metal Oxide Microspheres as Highly Efficient Catalysts
for Selective Oxidation of Ethylbenzene. Chem. Eng. J. 2016,
[12] Guo, J.; Wang, X.; Miao, P.; Liao, X.; Zhang, W.; Shi, B. One-
step Seeding Growth of Controllable Ag@Ni Core–shell
Nanoparticles on Skin Collagen Fiber with Introduction of
Plant Tannin and Their Application in High-performance
Microwave Absorption. J. Mater. Chem. 2012, 22, 11933–11942.
[13] Taner, M.; Sayar, N.; Yulug, I. G.; Suzer, S. Synthesis,
Characterization
and
Antibacterial
Investigation
of
Silver–Copper Nanoalloys. J. Mater. Chem. 2011, 21,
[29] Parvanak Boroujeni, K.; Ghasemi, P. Synthesis and Application
of a Novel Strong and Stable Supported Ionic Liquid Catalyst
with Both Lewis and Brønsted Acid Sites. Catal. Commun.
[30] Gupta, A. D.; Samanta, S.; Mondal, R.; Mallik, A. K. A Rapid,
efficient and Green Method for Synthesis of 3,3’-arylmethylene-
bis-4-hydroxycoumarins without Use of Any Solvent, catalyst or
Solid Surface. Chem. Sci. Trans. 2013, 2, 524–528. DOI:
[14] Senapati, S.; Srivastava, S. K.; Singh, S. B.; Mishra, H. N.
Magnetic Ni/Ag Core–shell Nanostructure from Prickly Ni
Nanowire Precursor and Its Catalytic and Antibacterial Activity.
J. Mater. Chem. 2012, 22, 6899–6906. DOI: 10.1039/
[15] Argueta-Figueroa, L.; Morales-Luckie, R. A.; Scougall-Vilchis,
ꢀ
R. J.; Olea-Mejıa, O. F. Synthesis, characterization and
Antibacterial Activity of Copper, nickel and Bimetallic Cu–Ni
Nanoparticles for Potential Use in Dental Materials. Prog. Nat.
[31] Al-Kadasi, A. M. A.; G. M. Ultrasound, N. Assisted Catalyst-
free One-pot Synthesis of Biscoumarins in Neat Water. Int. J.
Chem. Sci 2012, 10, 324–330.
[16] Chatterjee, J.; Bettge, M.; Haik, Y.; Chen, C. J. Synthesis and [32] Parvanak Boroujeni, K.; Ghasemi, P.; Rafienia, Z. Synthesis of
Characterization of Polymer Encapsulated Cu–Ni Magnetic
Nanoparticles for Hyperthermia Applications. J. Magn. Mater
biscoumarin derivatives using poly 4-vinylpyridine, supported
dual acidic ionic liquid as a heterogeneous catalyst. Monatsh.
Chem. 2014, 145, 1023–1026.