K
A. Koperniku et al.
Paper
Synthesis
1H NMR (CDCl3): δ = 7.28 (s, 4 H), 4.48 (s, 2 H), 4.13 (s, 2 H), 3.47 (t,
3J = 6.5 Hz, 2 H), 2.36 (s, 3 H), 1.58–1.65 (m, 2 H), 1.28–1.41 (m, 6 H),
0.90 (t, 3J = 7.0 Hz, 3 H).
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
13C NMR (CDCl3): δ = 195.3, 138.0, 137.0, 129.0, 128.1, 72.7, 70.8, 33.4,
31.9, 30.5, 29.9, 26.1, 22.8, 14.3.
HRMS (HESI): m/z [M + Na]+ calcd for C16H24O2S: 303.1395; found:
303.1387.
References
(1) Cheung, P. K.; Horhant, D.; Bandy, L. E.; Zamiri, M.; Rabea, S. M.;
Karagiosov, S. K.; Matloobi, M.; McArthur, S.; Harrigan, P. R.;
Chabot, B.; Grierson, D. S. J. Med. Chem. 2016, 59, 1869.
(2) Shkreta, L.; Blanchette, M.; Toutant, J.; Wilhelm, E.; Bell, B.;
Story, B. A.; Balachandran, A.; Cochrane, A.; Cheung, P. K.;
Harrigan, P. R.; Grierson, D. S.; Chabot, B. Nucleic Acids Res.
2017, 45, 4051.
(3) (a) Rivalle, C.; Wendling, F.; Tambourin, P.; Hloste, J. M.; Bisagni,
E.; Cherman, J. C. J. Med. Chem. 1983, 26, 181. (b) Miller, C. M.;
McCarthy, F. O. RSC Adv. 2012, 2, 8883. (c) Stiborová, M.;
Poljaková, J.; Martinková, E.; Bořek-Dohalská, L.; Eckschlager, T.;
Kizek, R.; Frei, E. Interdiscip. Toxicol. 2011, 4, 98. (d) Martinez, R.;
Chacon-Garcia, L. Curr. Med. Chem. 2005, 12, 127.
(4) (a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61,
10827. (b) El-Faham, A.; Albericio, F. Chem. Rev. 2011, 111,
6557. (c) Humphrey, J. M.; Chamberlin, R. A. Chem. Rev. 1997,
97, 2243.
(5) (a) Quelever, G.; Burlet, S.; Garino, C.; Pietrancosta, N.; Laras, Y.;
Kraus, J.-L. J. Comb. Chem. 2004, 6, 695. (b) Due-Hansen, M. E.;
Pandey, S. K.; Christiansen, E.; Andersen, R.; Hansena, S. V. F.;
Ulven, T. Org. Biomol. Chem. 2016, 14, 430.
(4-((Hexyloxy)methyl)phenyl)methanethiol (22)
To a solution of thioacetate 21 (280 mg, 1 mmol, 1 equiv) in MeOH (3
mL) was added K2CO3 (152 mg, 1.1 mmol, 1.1 equiv), and the mixture
was stirred at r.t. under N2 for 0.5 h. The reaction mixture was then
acidified with 1 N aq HCl to pH 3–4 and concentrated under reduced
pressure. The residue was dissolved in heptane, and the resulting
solution was washed with H2O, dried over Na2SO4, and concentrated
to afford benzyl mercaptan 22 as a yellowish liquid (185 mg, 78%).
1H NMR (CDCl3): δ = 7.30 (s, 4 H), 4.48 (s, 2 H), 3.74 (d, J = 7.5 Hz, 2
3
3
3
H), 3.46 (t, J = 6.5 Hz, 2 H), 1.74 (t, J = 7.2 Hz, 1 H), 1.57–1.64 (m, 2
H), 1.26–1.40 (m, 6 H), 0.89 (t, 3J = 7.0 Hz, 3 H).
13C NMR (CDCl3): δ = 140.6, 137.8, 128.2 (2 × C), 72.7, 70.8, 31.9, 29.9,
28.9, 26.1, 22.8, 14.3.
HRMS (HESI): m/z [M + Na]+ calcd for C14H22OS: 261.1289; found:
261.1281.
S-(4-((Hexyloxy)methyl)benzyl) 1-Methyl-4-oxo-1,4-dihydropyri-
dine-3-carbothioate (23)
Benzyl mercaptan 22 (474 mg, 1.99 mmol, 1.2 equiv) was added to a
suspension of carboxylic acid 10 (254 mg, 1.66 mmol, 1 equiv) and
TFFH (438 mg, 1.66 mmol, 1 equiv) in MeCN (5 mL) containing DIEA
(1.45 mL, 8.3 mmol, 5 equiv), and the mixture was stirred under N2 at
r.t. for 16 h. The solvent was then removed, and the residue was taken
up in sat. aq NaHCO3 and extracted with EtOAc. The combined organic
layers were washed with 0.5 N aq HCl, sat. aq NaHCO3, and brine, then
dried over Na2SO4 and concentrated. The residue was taken up in Et2O
and precipitation of thioester 23 was induced by addition of H2O (4–5
drops). The ethereal layer was decanted and the precipitate was
washed with a minimal volume of Et2O (2–3 mL). Compound 23 was
obtained as an off-white solid (312 mg, 50%); mp 68–70 °C.
(6) Zamiri, M.; Grierson, D. S. Synthesis 2017, 49, 571.
(7) Dehe, D.; Munstein, I.; Reis, A.; Theil, W. R. J. Org. Chem. 2011,
76, 1151.
(8) (a) Yang, W.; Drueckhammer, D. G. M. J. Am. Chem. Soc. 2001,
123, 11004. (b) Castro, E. A. Chem. Rev. 1999, 99, 3505.
(9) (a) Carpino, L. A.; El-Faham, A. J. Am. Chem. Soc. 1995, 117, 5401.
(b) El-Fahm, A.; Abdul-Ghani, M. Org. Prep. Proced. Int. 2003, 35,
369. (c) El-Fahm, A.; Khatab, S. N.; Abdul-Ghani, M. ARKIVOC
2006, (xii), 57.
(10) Kricheldorf, H. R. Justus Liebigs Ann. Chem. 1971, 745, 81.
(11) Spartan Version 6.1.7; Wavefunction, Inc: Irvine (CA, USA), 2014.
(12) Mai, K.; Patil, G. J. Org. Chem. 1986, 51, 3545.
(13) (a) Geiger, W.; Boshagen, H.; Medenwald, H. Chem. Ber. 1969,
102, 1961. (b) Boshagen, H.; Geiger, W. Chem. Ber. 1976, 109,
659.
(14) (a) Wu, Y.-Y.; Chen, Y.; Gou, G.-Z.; Mu, W.-H.; Lv, X.-J.; Du, M.-L.;
Fu, W.-F. Org. Lett. 2012, 14, 5226. (b) Chen, X.; Wen, Z.; Xian,
M.; Ramachandran, N.; Tang, X.; Schlegel, B.; Mutus, B.; Wang, P.
G. J. Org. Chem. 2001, 66, 6064. (c) Singh, B. Tetrahedron Lett.
1971, 321.
(15) (a) Yang, K.-W.; Cannon, J. G.; Rose, J. G. Tetrahedron Lett. 1970,
1791. (b) Ruggeri, R. B.; Heathcock, C. L. J. Org. Chem. 1987, 52,
5745. (c) Ooi, T.; Tayama, E.; Yamada, M.; Maruoka, K. Synlett
1999, 729.
IR (ATR): 1101, 1270, 1718, 2858, 2929 cm–1
.
1H NMR (CD3CN): δ = 8.22 (d, 4J = 2.4 Hz, 1 H), 7.39–7.42 (dd, 3J = 7.6
Hz, 4J = 2.4 Hz, 1 H), 7.32 (d, 3JA′B′ = 8.1 Hz, 2 H), 7.24 (d, 3J = 8.1 Hz, 2
3
H), 6.37 (d, J = 7.6 Hz, 1 H), 4.42 (s, 2 H), 4.12 (s, 2 H), 3.67 (s, 3 H),
3.42 (t, 3J = 6.6 Hz, 2 H), 1.53–1.57 (m, 2 H), 1.26–1.36 (m, 6 H), 0.88 (t,
3J = 6.8 Hz, 3 H).
13C NMR (CD3CN): δ = 189.9, 176.4, 146.4, 142.5, 139.3, 139.1, 129.0,
124.1, 123.1, 73.3, 71.4, 45.1, 33.8, 32.8, 30.8, 27.0, 23.7, 14.7.
HRMS (HESI): m/z [M + H]+ calcd for C21H27NO3S: 374.1784; found:
374.1781.
(16) (a) Tanwar, B.; Kumar, A.; Yogeeswari, P.; Sriram, D.;
Chakraborti, A. K. Bioorg. Med. Chem. Lett. 2016, 26, 5960.
(b) Kim, B. R.; Lee, H.-G.; Kang, S.-B.; Sung, G. H.; Kim, J.-J.; Park,
J. K.; Lee, S.-G.; Yoon, Y.-J. Synthesis 2012, 44, 42.
(17) (a) Kadam, S.; Kim, S. S. Green Chem. 2010, 12, 94. (b) Talami, S.;
Stirling, J. M. Can. J. Chem. 1999, 77, 1105.
(18) (a) Ross, W. J. C. J. Chem. Soc. C 1966, 1816. (b) Lang, R.; Wahl, A.;
Skurk, T.; Yagar, E. F.; Schmiech, L.; Eggers, R.; Hauner, H.;
Hofmann, T. Anal. Chem. 2010, 82, 1486.
Acknowledgment
We gratefully thank the NSERC CREATE Sustainable Synthesis (CSS)
Program for a student scholarship (A.K.). We also thank three foreign
exchange students, Anouk Lecordier, Rodolphe Vatinel, and Christo-
phe Bobin from ENSICAEN, Caen, France for their contribution to the
early phase of this work.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2019, 51, A–L