2
004; (b) K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem.,
Int. Ed., 2005, 44, 4442.
For reviews and recent examples, see: (a) S. P. Stanforth, Tetrahedron,
998, 54, 263; (b) D. Alberico, M. E. Scott and M. Lautens, Chem.
3
1
Rev., 2007, 107, 174; (c) L.-C. Campeau, D. R. Stuart and K. Fagnou,
Aldrichimica Acta, 2007, 40, 35; (d) B. J. Li, S. D. Yang and Z. J. Shi,
Synlett, 2008, 949; (e) G. P. McGlacken and L. M. Bateman, Chem.
Soc. Rev., 2009, 38, 2447; (f) O. Daugulis, H.-Q. Do and
D. Shabashov, Acc. Chem. Res., 2009, 42, 1074; (g) S. Yanagisawa,
T. Sudo, R. Noyori and K. Itami, J. Am. Chem. Soc., 2006, 128, 11748;
(h) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110, 1147;
Scheme 3 Proposed mechanism for the oxidative decarbonylative
homocoupling.
(i) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel and J.-Q. Yu, Chem.
Soc. Rev., 2009, 38, 3242; (j) F. Pogan and P. H. Dixneuf, Adv. Synth.
Catal., 2009, 351, 1737; (k) L. Ackermann, R. Vicente and
A. R. Kapdi, Angew. Chem., Int. Ed., 2009, 48, 9792.
For reviews, see: (a) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39,
540; (b) M. C. Kozlowski, B. J. Morgan and E. C. Linton, Chem.
Soc. Rev., 2009, 38, 3193.
(
1c, 1n and 1o) were examined and this homocoupling was
not sensitive to the increased steric hindrance (entries 4–6).
Benzaldehyde, 4-fluorobenzaldehye and 3-chlorobenzaldehyde
4
(1e, 1f and 1h) can also take part in this homocoupling albeit
with slightly lower yields because of oxidations to the corres-
ponding benzoic acid derivatives (entries 8–10). It is worth noting
that, in all cases, almost no biaryl products were detected by
5 For reviews, see: (a) J. Tsuji, Transition Metal Reagents and
Catalysts, Wiley, New York, 2004; (b) F. Diederich and
P. J. Stang, Metal-Catalyzed Cross-Coupling Reactions,
Wiley-VCH, Weinheim, Germany, 1998.
1
H NMR of the crude reaction mixtures, which illustrated that the
6
(a) M. Hudlicky, in Oxidations in Organic Chemistry, ACS
Monograph 186, American Chemical Society, Washington, DC,
oxidative decarbonylative homocoupling using the Method B had
an excellent chemoselectivity for the diarylketones.
1990; (b) R. C. Larock, Comprehensive Organic Transformations,
VCH, New York, 1989, p. 591.
A tentative mechanism to rationalize this novel rhodium-
catalyzed oxidative decarbonylative homocoupling is illustrated in
Scheme 3. First, the rhodium(I) catalyst undergoes oxidative
addition with the aldehyde C–H bond rapidly to produce
acylrhodium hydride 7, which is oxidized by TBP to yield
acylrhodium complex 8. Decarbonylation of acylrhodium
complex 8 gives arylrhodium complex 9. Second, when
PPh3 is used as the ligand, transmetalation between two
arylrhodium 9 complexes gives complex 10, which upon
reductive elimination releases biaryl product 2. Similarly,
when dppe is used as the ligand, transmetalation between
acylrhodium complex 8 and arylrhodium complex 9 forms
complex 11, which upon reductive elimination releases
diarylketone product 3 and regenerates the rhodium catalyst
for further reactions. The difference is that when dppe is used
as the ligand, the decarbonylation of the acylrhodium complex
7
(a) G. Olah, Friedel–Crafts and Related Reactions, Interscience
Publishers, New York, 1964, vol. III, p. 1259; (b) M. Osman, Helv.
Chim. Acta, 1982, 65, 2448; (c) H. E. Zimmerman and
D. H. Paskovich, J. Am. Chem. Soc., 1964, 86, 2149;
(
d) F. R. Heitzler, H. Hopf, P. G. Jones, P. Bubenitschek and
V. Lehne, J. Org. Chem., 1993, 58, 2781; (e) A. Ianni and
S. R. Waldvogel, Synthesis, 2006, 2103.
(a) R. K. Dieter, Tetrahedron, 1999, 55, 4177; (b) T. Ishiyama,
H. Kizaki, T. Hayashi, A. Suzuki and N. Miyaura, J. Org. Chem.,
8
1
998, 63, 4726; (c) T. Ishiyama, H. Kizaki, N. Miyaura and
A. Suzuki, Tetrahedron Lett., 1993, 34, 7595.
9 (a) R. C. Larock, Q. Tian and A. A. Pletnev, J. Am. Chem. Soc.,
999, 121, 3238; (b) A. A. Pletnev and R. C. Larock, Tetrahedron
1
Lett., 2002, 43, 2133; (c) A. A. Pletnev, Q. Tian and R. C. Larock,
J. Org. Chem., 2002, 67, 9276; (d) C. Zhou and R. C. Larock,
J. Am. Chem. Soc., 2004, 126, 2302; (e) C. Zhou and R. C.
Larock, J. Org. Chem., 2006, 71, 3551; (f) H. Shimizu and
M. Murakami, Chem. Commun., 2007, 2855; (g) L. Zhao and
X. Lu, Angew. Chem., Int. Ed., 2002, 41, 4343.
1
0 (a) T. Hirao, D. Misu and T. Agawa, J. Am. Chem. Soc., 1985, 107,
7179; (b) T. Satoh, T. Itaya, M. Miura and M. Nomura, Chem.
Lett., 1996, 823; (c) T. Ishiyama and J. F. Hartwig, J. Am. Chem.
Soc., 2000, 122, 12043; (d) L. S. Liebeskind and J. Srogl, J. Am.
Chem. Soc., 2000, 122, 11260; (e) Y.-C. Huang, K. K. Majumdar
and C.-H. Cheng, J. Org. Chem., 2002, 67, 1682; (f) M. Pucheault,
S. Darses and J.-P. Genet, J. Am. Chem. Soc., 2004, 126, 15356.
1 For excellent reviews, see: (a) M. C. Willis, Chem. Rev., 2010, 110,
8
to generate the arylrhodium complex 9 is much more difficult
caused by the decreased dissociation ability of metallacyclic
1
1,17
Rh complex 8 (L = dppe).
Once the arylrhodium
complex 9 is formed, it will undergo transmetalation with
the acylrhodium complex 8 rapidly to generate complex 11.
In summary, we have developed a novel rhodium-catalyzed
oxidative decarbonylative homocoupling of aromatic aldehydes to
generate biaryls and diarylketones selectively and efficiently,
triggered by the choice of different phosphine ligands. Unlike
previous methods using aryl halide or acyl halide, the current
reaction utilizes cheap and abundant aldehydes as starting
material. Application of this novel method to aliphatic aldehydes
and cross decarbonylative coupling of aromatic aldehydes is under
further investigation.
1
7
2
25; (b) C.-H. Jun, E.-A. Jo and J.-W. Park, Eur. J. Org. Chem.,
007, 1869; (c) M. Garralda, Dalton Trans., 2009, 3635.
12 For examples, see: (a) P. J. Biju and G. S. R. S. Rao, Chem.
Commun., 1999, 2225; (b) C. M. Beck, S. E. Rathmill, Y. J. Park,
J. Chen and R. H. Crabtree, Organometallics, 1999, 18, 5311;
(c) M. Kreis, A. Palmelund, L. Bunch and R. Madsen, Adv. Synth.
Catal., 2006, 348, 2148.
13 (a) L. Yang, C. A. Correia, X. Guo and C.-J. Li, Tetrahedron Lett.,
2010, 51, 5486; (b) L. Yang, X. Guo and C.-J. Li, Adv. Synth.
Catal., 2010, 352, 2899.
1
4 (a) X. Guo, J. Wang and C.-J. Li, J. Am. Chem. Soc., 2009, 131,
15092; (b) X. Guo, J. Wang and C.-J. Li, Org. Lett., 2010, 12, 3176;
(c) J. Wang, X. Guo and C.-J. Li, J. Organomet. Chem., 2011, 696,
We are grateful to the Canada Research Chair (Tier I)
Foundation (to CJL), CFI, and NSERC for partial support
of our research.
2
11For a highlight of our work, see: (d) C. L. Allen and
J. M. J. Williams, Angew. Chem., Int. Ed., 2010, 49, 1724.
5 Q. Shuai, L. Yang, X. Guo, O. Basle and C.-J. Li, J. Am. Chem.
Soc., 2010, 132, 12212.
6 For reviews, see: (a) J. Tsuji and K. Ohno, Synthesis, 1969, 157;
(b) A. P. Kozikowski and H. F. Wetter, Synthesis, 1976, 561.
1
1
Notes and references
1
J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire,
Chem. Rev., 2002, 102, 1359.
17 (a) Z. Shen, H. A. Khan and V. M. Dong, J. Am. Chem. Soc., 2008,
130, 2916; (b) K. Tanaka, Y. Shibata, T. Suda, Y. Hagiwara and
M. Hirano, Org. Lett., 2007, 9, 1215 and references therein.
2
For recent reviews, see: (a) Metal-Catalyzed Cross-Coupling Reactions,
ed. A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, Germany,
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 2161–2163 2163