4
18. Sakakura, A.; Koshikari, Y.; Akakura, M.; Ishihara, K. Org. Lett, 2011,
14, 30-33.
Table 2 Reusability of TMPT
19. Koshikari, Y.; Sakakura, A.; Ishihara, K. Org. Lett. 2012, 14, 3194-3197.
20. Gruttadauria, M.; Giacalone, F,; Noto, R. Chem. Soc. Rev. 2008, 37,
1666-1688.
21. Ferré, M.; Pleixats, R.; Man, M. W. C.; Cattoën, X. Green. Chem. 2016,
18, 881-922.
run
1
2
3
4
5
6
7
8
9
10
98
conv.(%) a
99
99 99 99
99 99 98
98 98
22. Wakasugi, K.; Misaki, T.; Yamada, K.; Tanabe, Y. Tetrahedron. Lett.
2000, 41, 5249-5252.
a The conversion of phenylacetic acid was evaluated by GC analysis.
23. Ishihara, K.; Nakagawa, S.; Sakakura, A. J. Am. Chem. Soc. 2005, 127,
4168-4169.
Conclusion
24. Ishihara, K.; Nakagawa, S.; Sakakura, A. Tetrahedron. 2006, 62, 422-433.
25. Ishihara, K.; Nakagawa, S.; Sakakura, A. Nat. Protoc. 2007, 2, 1746-
1751.
In summary, alkyl piperidinium sulfonates showed excellent
performance in esterifications without the use of any dehydrating
or azeotropic agents to remove the generated water. Especially,
the sterically hindered catalyst TMPT displayed remarkable
selectivity and could be conveniently reused for ten times
without considerable loss of its activity. Herein, we have
developed a cheap, eco-friendly method for esterification with
easy operation, which will be promising in large-scaled
preparation of esters.
26. Ishihara, K.; Sakakura, A.; Watanabe, H.; Nakagawa, S. Chem-Asian J.
2007, 2, 477-483.
27. Hall-Jr, H. K. J. Am. Chem. Soc. 1957, 79, 5441-5444.
28. Hall-Jr, H. K. J. Am. Chem. Soc. 1957, 79, 5444-5447.
29. Crystallographic data for the structure reported in this paper were
collected on a Bruker CCD area-detector diffractometer equipped with a
graphite-monochromated MoKa radiation (λ
= 0.71073 Å). The
crystallographic data have been deposited with Cambridge
Crystallographic Data Centre, the data can be obtained free of charge on
application CCDC no. 12 Union Road, Cambridge CB2 1EZ, UK [fax:
(+44) 1223-336-033, e-mail:deposit@ccdc.cam.ac.uk. TMPT (CCDC-
1478246): Mw = 291.33, C10H20F3NO3S, space group Pbca, crystal
dimensions 0.220×0.170×0.130 mm3, T = 293(2) K, orthorhombic, a =
8.6964(11) Å, b = 16.499(2) Å, c = 19.395(2) Å, α = β = γ = 90o, V =
2782.9(6) Å3, Dcalcd = 1.391 g cm-3, Z = 8, μ = 0.268 mm-1, F(000) =
1232, 15047 reflections were corrected, 2592 independent, 175
parameters were used for the solution of the structure, non-hydrogen
atoms were refined anisotropically, R1 = 0.0558, wR2 = 0.1524, GOF =
1.056.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No. 21476071) and Shanghai Leading
Academic Discipline Project (B502).
Supplementary data
1
Supplementary data (Experimental details, H NMR data and
spectra, 13C NMR data and spectra, FT-IR data and spectra)
associated with this article can be found, in the online version, at
30. Gamrad, W.; Dreier, A.; Goddard, R.; Pöschke, K. R.
Angew. Chem. Int. Ed. 2015, 54, 4482-4487.
References and notes
1. Sakakura, A.; Koshikari, Y.; Ishihara, K. Tetrahedron. Lett. 2008, 49,
5017-5020.
31. Onoda, A.; Yamada, Y.; Doi, M.; Okamura, T.; Ueyamaet, N. Inorg.
Chemistry. 2001, 40, 516-521.
2. Cardellini, F.; de-Santi, V.; Brinchi. L.; Germani, R. Tetrahedron. Lett.
2012, 53, 5151-5155.
32. PPT (CCDC-1478245): Mw = 235.23, C6H12F3NO3S, space group P212121,
crystal dimensions 0.220×0.180×0.100 mm3,
T
=
293(2) K,
3. Cai, L. -Z.; Meng, D. -C.; Zhan, S. -Q.; Yang, X. -X.; Liu, T. -P.; Pu, H.
-M.; Tao, X. -C. RSC. Adv. 2015, 5, 72146-72149.
4. Zhu, H.-P.; Yang, F.; Tang, J.; He, M.-Y. Green. Chem. 2003, 5, 38-39.
5. Ishihara, K. Tetrahedron. 2009, 65, 1085-1109.
6. Souza, F. T. C.; de-Almeida, R. M.; Júnior, M. A. C.; Albuquerque, N. J.
A.; Meneghetti, S. M.P.; Meneghetti, M.R. Catal. Commun. 2014, 46,
179-182.
orthorhombic, a = 8.6917(11) Å, b = 11.3406(15) Å, c = 20.677(3) Å, α
= β = γ = 90o, V = 2038.1(5) Å3, Dcalcd = 1.533 g cm-3, Z = 8, μ = 0.345
mm-1, F(000) = 976, 11772 reflections were corrected, 3801 independent,
352 parameters were used for the solution of the structure, non-hydrogen
atoms were refined anisotropically, R1 = 0.0526, wR2 = 0.1536, GOF =
1.028.
33. Watson, W. Org. Process. Res. Dev. 2012, 16, 1877-1877.
7. Lang, X.-W.; Jia, W.-Z.; Wang, Y.-N.; Zhu. Z.-R. Catal. Commun. 2015,
70, 58-61.
8. Zhan, S. -Q.; Tao, X. -C.; Cai, L.-Z.; Liu, X. -H.; Liu, T.-P. Green.
Chem. 2014, 16, 4649-4653.
9. Leng, Y.; Wang, J.; Zhu, D.; Ren, X.-Q.; Ge, H.-Q.; Shen, L.
Angew. Chem. Int. Ed. 2009, 121, 174-177.
10. Fernandes, S. A.; Natalino, R.; Gazolla, P. A. R.; da-Silva, M. J.; Jham,
G. N. Tetrahedron. Lett. 2012, 53, 1630-1633.
11. Zhou, Y.; Guo, Z.; Hou. W.; Wang, Q.; Wang, J. Catal. Sci. Technol.
2015, 5, 4324-4335.
12. Leng, Y.; Wang, J.; Zhu, D. -R.; Ren, X.-Q.; Ge, H.-Q.; Shen, L.
Angew. Chem. Int. Ed. 2009, 121, 174-177.
13. Minakawa, M.; Baek, H.; Yamada, Y. M. A.; Han, J. W.; Uozumi, Y.
Org. Lett. 2013, 15, 5798-5801.
14. Manabe, K.; Sun, X. M.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123,
10101-10102.
15. Tanemura, K.; Suzuki, T. Tetrahedron. Lett. 2013, 54, 1972-1975.
16. Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T. N. B. Tetrahedron. Lett.
2002, 43, 879-882.
17. Gacem, B.; Jenner, G. Tetrahedron. Lett. 2003, 44, 1391-1393.