Z. Yu et al. / Journal of Molecular Structure 1030 (2012) 113–124
123
[16] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure
Methods, Gaussian, Inc., Pittsburgh, USA, 1996.
[17] C. Ravikumar, I.H. Joe, V.S. Jayakumar, Chem. Phys. Lett. 460 (2008) 552–558.
[18] M. Kurt, T.R. Sertbakan, M. Ozduran, Spectrochim. Acta A 70 (2008) 664–673.
[19] Y. Sun, Q. Hao, W. Wei, Z. Yu, L. Lu, X. Wang, Y. Wang, J. Mol. Struct.: Theochem
904 (2009) 74–82.
[20] Y. Sun, W. Wei, Q. Hao, L. Lu, X. Wang, Spectrochim. Acta A 73 (2009) 772–781.
[21] Y. Sun, Q. Hao, W. Wei, Z. Yu, L. Lu, X. Wang, Y. Wang, J. Mol. Struct. 929 (2009)
10–21.
[22] Y. Sun, Q. Hao, Z. Yu, W. Jiang, L. Lu, X. Wang, Spectrochim. Acta A 73 (2009)
892–901.
electron-transfer properties have been obtained by the calculations
at the DFT-B3LYP/6-31G(d) level using Gaussian 03W package.
From the structural parameters obtained by experimental XRD
and theoretical optimization, most of the optimized bond lengths
are slightly longer than the experimental values, and the optimized
bond angles are slightly different from the experimental values.
The vibrational spectra have been ascribed to the molecular struc-
ture with the help of the theoretical spectra. In the process of spec-
tral assignment, the experimental and theoretical results are
supported with each other, particularly, in the carbonyl vibrational
assignments. The nonlinear optical calculation of studied molecule
reveals that the first-order hyperpolarizability (b0) of the com-
pound is seven times as the value of urea. The NBO analysis result
reveals that the studied molecule has long-range electron-transfer
characteristics with external perturbations, and presents a long-
range electron-transfer structural property with the energy gap
of more than 3.639 eV when the orbital electrons are transported
between the FMOs. The frontier molecular orbitals should be
responsible for the NLO and long-range electron-transfer proper-
ties with external perturbations, such as, applied fields and suit-
able photon absorptions. The results indicate that the
investigated compound may be an excellent photo-responsive
material.
[23] Y. Sun, Q. Hao, Z. Yu, W. Wei, L. Lu, X. Wang, Mol. Phys. 107 (2009) 223–235.
[24] Y. Sun, Q. Hao, L. Lu, X. Wang, X. Yang, Spectrochim. Acta A 75 (2010) 203–211.
[25] Y. Sun, Acta Crystallogr. E62 (2006) o5860–o5861.
[26] Y. Sun, Chin. J. Struct. Chem. 26 (2007) 55–58.
[27] Z. You, J. Wang, J. Chi, Acta Crystallor. E62 (2006) o1652–o1653.
[28] Y. Sun, D. Zhang, H. Song, Chin. J. Struct. Chem. 26 (2007) 511–514.
[29] Y. Sun, R. Zhang, D. Ding, S. Liu, B. Wang, Y. Wang, Y. Lin, Struct. Chem. 17
(2006) 655–665.
[30] R. Zhang, Y.X. Sun, Acta Crystallogr. E62 (2006) o5845–o5847.
[31] Y. Sun, Acta Crystallogr. E62 (2006) o5858–o5859.
[32] Y.F. Zheng, G.B. Yan, Y.B. Gu, Acta Crystallogr. E62 (2006) o5134–o5135.
[33] Z. Jing, M. Yu, X. Chen, Q. Deng, Acta Crystallogr. E61 (2005) o3359–o3360.
[34] T. Hökelek, M. Isiklan, Z. Kiliç, Acta Crystallogr. C57 (2001) 117–119.
[35] Z.L. Jing, Z. Fan, M. Yu, X. Chen, C.H. Diao, Q.L. Deng, Acta Crystallogr. E61
(2005) o3532–o3533.
[36] X.L. Zhang, Z.X. Li, Acta Crystallogr. E61 (2005) o266–o268.
[37] G. Sun, Y. Sun, C. Yu, Z. Liu, C. Huang, L. Xu, J. Mol. Struct. 1006 (2011) 383–394.
[38] J.L. Chambers, K.L. Smith, M.R. Pressprich, Z. Jin, SMART, Bruker Advanced X-
ray Solutions, Version 5.628, Bruker AXS Inc., Madison, WI, 2002.
[39] SAINTPlus, Data Reduction and Correction Program, Version 6.22, Bruker AXS
Inc., Madison, WI, 2001.
We hope the results are of assistance in the quest of experimen-
tal and theoretical evidences for the compound as reaction inter-
mediates, spectral properties and photo-responsive materials.
[40] G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area
Detector Data, University of Gottingen, Germany, 1996.
[41] G.M. Sheldrick, SHELXS-97 and SHELXL-97; Programs for Structure Resolution
and for Structure Refinement, University of Gottingen, Germany, 1997.
[42] G.M. Sheldrick, SHELXTL, Structure Determination Software Suite, Version
6.10, Bruker AXS Inc., Madison, WI, 2000.
Acknowledgements
[43] H. Arslan, Ö. Algül, T. Önkol, Spectrochim. Acta A 70 (2008) 606–614.
[44] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03W, Version 6.0, Gaussian, Inc., Wallingford, CT, 2004.
[45] R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. Lee Hovell, R. Gilliland,
GaussView, Version 3.09, Semichem, Inc., Shawnee Mission, KS, 2003.
[46] V. Krishnakumar, G. Keresztury, T. Sundius, R. Ramasamy, J. Mol. Struct. 702
(2004) 9–21.
[47] P.L. Polavarapu, J. Phys. Chem. 94 (1990) 8106–8112.
[48] A. Karakas, A. Elmali, H. Ünver, I. Svoboda, Spectrochim. Acta A 61 (2005)
2979–2987.
[49] P.S. Liyanage, R.M. de Silva, K.M.N. de Silva, J. Mol. Struct.: Theochem 639
(2003) 195–201.
[50] P.J. Mendes, J.P.P. Ramalho, A.J.E. Candeias, M.P. Robalo, M.H. Garcia, J. Mol.
Struct.: Theochem 729 (2005) 109–113.
[51] H. Alyar, Z. Kantarci, M. Bahat, E. Kasap, J. Mol. Struct. 2007 (2007) 516–520.
[52] I.C. de Silva, R.M. de Silva, K.M. Nalin De Silva, J. Mol. Struct.: Theochem 728
(2005) 141–145.
[53] J.O. Morley, J. Am. Chem. Soc. 110 (1988) 7660–7663.
[54] H. Li, K. Han, X. Shen, Z. Lu, Z. Huang, W. Zhang, Z. Zhang, L. Bai, J. Mol. Struct.:
Theochem 767 (2006) 113–118.
[55] N. Sundaraganesan, J. Karpagam, S. Sebastian, J.P. Cornard, Spectrochim. Acta A
73 (2009) 11–19.
[56] A.D. Tillekaratne, R.M. de Silva, K.M.N. de Silva, J. Mol. Struct.: Theochem 638
(2003) 169–176.
This work was supported by Natural Science Foundations of
China (Nos. 21073092 and 21103092) and Jiangsu Planned Project
for Postdoctoral Research Funds (No. 1001011C). We also thank
Qufu Normal University for Technical Assistance.
Appendix A. Supplementary material
Supplementary data associated with this article can be found,
References
[1] J.J. Li, Knorr Pyrazole Synthesis, Springer, Berlin, Heidelberg, New York, 2006.
pp. 331–334.
[2] E. Radzikowska, K. Onish, E. Chojak, Eur J Cancer 31 (1995) 225.
[3] K.L. Khanduja, S.C. Dogra, S. Kaushal, R.R. Sharma, Biochem. Pharmacol. 33
(1984) 449.
[4] I.D. Capel, M. Jenner, M.H. Pinnock, D.C. Williams, Biochem. Pharmacol. 27
(1978) 1413–1416.
[5] S. Bondock, R. Rabie, H.A. Etman, A.A. Fadda, Eur. J. Med. Chem. 43 (2008) 2122.
[6] S. Cunha, S.M. Oliveira, J.M. Rodrigues, R.M. Bastos, J. Ferrari, O.C. de, L. Kato,
H.B. Napolitano, I. Vencato, C. Lariucci, J. Mol. Struct. 752 (2005) 32.
[7] G. Plesch, M. Blahova, J. Kratsmar-Smogrovic, C. Friebel, Inorg. Chim. Acta 136
(1987) 117–121.
[8] M.A. Madiha, A. Rania, H. Moataz, S. Samira, B. Sanaa, Eur. J. Pharmacol. 569
(2007) 222.
[9] A.N. Evstropov, V.E. Yavorovskaya, E.S. Vorob, Z.P. Khudonogova, L.N.
Gritsenko, E.V. Shmidt, S.G. Medvedeva, V.D. Filimonov, T.P. Prishchep, A.S.
Saratikov, Pharm. Chem. J. 26 (1992) 426–430.
[10] G. Turan-Zitouni, M. Sivaci, F.S. Kilic, K. Erol, Eur. J. Med. Chem. 36 (2001) 685–
689.
[57] D. Sajan, H. Joe, V.S. Jayakumar, J. Zaleski, J. Mol. Struct. 785 (2006) 43–53.
[58] K.S. Thanthiriwatte, K.M. Nalin de Silva, J. Mol. Struct.: Theochem 617 (2002)
169–175.
[59] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899–926.
[60] M. Amalanathan, V.K. Rastogi, I. Hubert Joe, M.A. Palafox, R. Tomar,
Spectrochim. Acta A 78 (2011) 1437–1444.
[61] M. Karabacak, M. Çinar, M. Kurt, J. Mol. Struct. 885 (2008) 28–35.
[62] J.J. Meinnel, A. Boudjada, A. Boucekkine, F. Boudjada, A. Moreac, S.F. Parker, J.
Phys. Chem. A 112 (2008) 11124–11141.
[11] T. Eicher, S. Hauptmann, The Chemistry of Heterocycles: Structures, Reactions,
Synthesis and Applications, Wiley-VCH HmbH & Co. KGaA, 2003.
[12] R.W. Boyd, The Nonlinear Optical Susceptibility, Academic Press, 2008.
[13] H.M. Zeyada, M.M. El-Nahass, E.M. El-Menyawy, Solar Energy Mater Solar Cells
92 (2008) 1586–1592.
[14] Y. Wang, Z. Yu, Y. Sun, Y. Wang, L. Lu, Spectrochim. Acta A 79 (2011) 1475–
1482.
[15] Y. Sun, Q. Hao, W. Tang, Y. Wang, X. Yang, L. Lu, X. Wang, Mater. Chem. Phys.
129 (2011) 217–222.
[63] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502–16513.