Biochemistry
Article
(42) Marino, T., Russo, N., and Toscano, M. (2013) Catalytic
mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas
aeruginosa. Chem. - Eur. J. 19, 2185−2192.
and sulfamate ester hydrolysis and the end products of type I sulfatase
inactivation by aryl sulfamates. J. Org. Chem. 79, 1995−2005.
(61) O’Brien, P. J., and Herschlag, D. (1999) Catalytic promiscuity
and the evolution of new enzymatic activities. Chem. Biol. 6, R91−R105.
(62) Khersonsky, O., and Tawfik, D. S. (2010) Enzyme promiscuity: a
mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471−
505.
(63) Babtie, A. C., Bandyopadhyay, S., Olguin, L. F., and Hollfelder, F.
(2009) Efficient catalytic promiscuity for chemically distinct reactions.
Angew. Chem., Int. Ed. 48, 3692−3694.
(43) Uduwela, D. R., Pabis, A., Stevenson, B. J., Kamerlin, S. C. L., and
McLeod, M. D. (2018) Enhancing the Steroid Sulfatase Activity of the
Arylsulfatase from Pseudomonas aeruginosa. ACS Catal. 8, 8902−8914.
(44) Boltes, I., Czapinska, H., Kahnert, A., von Bulow, R., Dierks, T.,
Schmidt, B., von Figura, K., Kertesz, M. A., and Uson, I. (2001) 1.3 Å
structure of arylsulfatase from Pseudomonas aeruginosa establishes the
catalytic mechanism of sulfate ester cleavage in the sulfatase family.
Structure 9, 483−491.
(64) Mohamed, M. F., and Hollfelder, F. (2013) Efficient, crosswise
catalytic promiscuity among enzymes that catalyze phosphoryl transfer.
Biochim. Biophys. Acta, Proteins Proteomics 1834, 417−424.
(65) Jonas, S., and Hollfelder, F. (2009) Mapping catalytic
promiscuity in the alkaline phosphatase superfamily. Pure Appl. Chem.
81, 731−742.
(45) Bond, C. S., Clements, P. R., Ashby, S. J., Collyer, C. A., Harrop,
S. J., Hopwood, J. J., and Guss, J. M. (1997) Structure of a human
lysosomal sulfatase. Structure 5, 277−289.
(46) Hernandez-Guzman, F. G., Higashiyama, T., Pangborn, W.,
Osawa, Y., and Ghosh, D. (2003) Structure of human estrone sulfatase
suggests functional roles of membrane association. J. Biol. Chem. 278,
22989−22997.
(66) Jensen, R. A. (1976) Enzyme recruitment in evolution of new
function. Annu. Rev. Microbiol. 30, 409−425.
(67) O’Brien, P. J., and Herschlag, D. (1998) Sulfatase Activity of E.
coli Alkaline Phosphatase Demonstrates a Functional Link to
Arylsulfatases, an Evolutionary Related Enzyme Family. J. Am. Chem.
Soc. 120, 12369−12370.
(68) Miton, C. M., Jonas, S., Fischer, G., Duarte, F., Mohamed, M. F.,
van Loo, B., Kintses, B., Kamerlin, S. C. L., Tokuriki, N., Hyvonen, M.,
and Hollfelder, F. (2018) Evolutionary repurposing of a sulfatase: A
new Michaelis complex leads to efficient transition state charge offset.
Proc. Natl. Acad. Sci. U. S. A. 115, E7293−E7302.
(69) Bielicki, J., Fuller, M., Guo, X. H., Morris, C. P., Hopewood, J. J.,
and Anson, D. S. (1995) Expression, purification and characterization
of recombinant human N-acetylgalactosamine-6-sulphatase. Biochem. J.
311, 333−339.
(70) Bielicki, J., and Hopwood, J. J. (1991) Human liver N-
acetylgalactosamine 6-sulphatase. Purification and characterization.
Biochem. J. 279, 515−520.
(71) Kintses, B., Hein, C., Mohamed, M. F., Fischlechner, M.,
Courtois, F., Laine, C., and Hollfelder, F. (2012) Picoliter cell lysate
assays in microfluidic droplet compartments for directed enzyme
evolution. Chem. Biol. 19, 1001−1009.
(72) Lassila, J. K., Zalatan, J. G., and Herschlag, D. (2011) Biological
phosphoryl-transfer reactions: understanding mechanism and catalysis.
Annu. Rev. Biochem. 80, 669−702.
(73) Beil, S., Kehrli, H., James, P., Staudenmann, W., Cook, A. M.,
Leisinger, T., and Kertesz, M. A. (1995) Purification and character-
ization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO
during growth in sulfate-free medium and cloning of the arylsulfatase
gene (atsA). Eur. J. Biochem. 229, 385−394.
(47) Lukatela, G., Krauss, N., Theis, K., Selmer, T., Gieselmann, V.,
von Figura, K., and Saenger, W. (1998) Crystal structure of human
arylsulfatase A: the aldehyde function and the metal ion at the active site
suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry 37,
3654−3664.
(48) Rivera-Colon, Y., Schutsky, E. K., Kita, A. Z., and Garman, S. C.
(2012) The Structure of Human GALNS Reveals the Molecular Basis
for Mucopolysaccharidosis IV A. J. Mol. Biol. 423, 736−751.
(49) Waldow, A., Schmidt, B., Dierks, T., von Bulow, R., and von
Figura, K. (1999) Amino acid residues forming the active site of
arylsulfatase A. Role in catalytic activity and substrate binding. J. Biol.
Chem. 274, 12284−12288.
(50) Jonas, S., van Loo, B., Hyvonen, M., and Hollfelder, F. (2008) A
new member of the alkaline phosphatase superfamily with a
formylglycine nucleophile: structural and kinetic characterisation of a
phosphonate monoester hydrolase/phosphodiesterase from Rhizobium
leguminosarum. J. Mol. Biol. 384, 120−136.
(51) Brandao, T. A., Hengge, A. C., and Johnson, S. J. (2010) Insights
into the reaction of protein-tyrosine phosphatase 1B: crystal structures
for transition state analogs of both catalytic steps. J. Biol. Chem. 285,
15874−15883.
(52) Hengge, A. C., Denu, J. M., and Dixon, J. E. (1996) Transition-
state structures for the native dual-specific phosphatase VHR and
D92N and S131A mutants. Contributions to the driving force for
catalysis. Biochemistry 35, 7084−7092.
(53) Hengge, A. C., Edens, W. A., and Elsing, H. (1994) Transition-
State Structures for Phosphoryl-Transfer Reactions of p-Nitrophenyl
Phosphate. J. Am. Chem. Soc. 116, 5045−5049.
(54) Hengge, A. C., Sowa, G. A., Wu, L., and Zhang, Z. Y. (1995)
Nature of the transition state of the protein-tyrosine phosphatase-
catalyzed reaction. Biochemistry 34, 13982−13987.
(55) Hengge, A. C., Zhao, Y., Wu, L., and Zhang, Z. Y. (1997)
Examination of the transition state of the low-molecular mass small
tyrosine phosphatase 1. Comparisons with other protein phosphatases.
Biochemistry 36, 7928−7936.
(56) Keng, Y. F., Wu, L., and Zhang, Z. Y. (1999) Probing the function
of the conserved tryptophan in the flexible loop of the Yersinia protein-
tyrosine phosphatase. Eur. J. Biochem. 259, 809−814.
(57) McCain, D. F., Catrina, I. E., Hengge, A. C., and Zhang, Z. Y.
(2002) The catalytic mechanism of Cdc25A phosphatase. J. Biol. Chem.
277, 11190−11200.
(58) McWhirter, C., Lund, E. A., Tanifum, E. A., Feng, G., Sheikh, Q.
I., Hengge, A. C., and Williams, N. H. (2008) Mechanistic study of
protein phosphatase-1 (PP1), a catalytically promiscuous enzyme. J.
Am. Chem. Soc. 130, 13673−13682.
(74) Hummerjohann, J., Laudenbach, S., Retey, J., Leisinger, T., and
Kertesz, M. A. (2000) The sulfur-regulated arylsulfatase gene cluster of
Pseudomonas aeruginosa, a new member of the cys regulon. J. Bacteriol.
182, 2055−2058.
(75) von Bulow, R., Schmidt, B., Dierks, T., von Figura, K., and Uson,
̈
I. (2001) Crystal structure of an enzyme-substrate complex provides
insight into the interaction between human arylsulfatase A and its
substrates during catalysis. J. Mol. Biol. 305, 269−277.
(76) Appel, M. J., and Bertozzi, C. R. (2015) Formylglycine, a post-
translationally generated residue with unique catalytic capabilities and
biotechnology applications. ACS Chem. Biol. 10, 72−84.
(77) Benkovic, S. J., and Benkovic, P. A. (1966) Studies on Sulfate
Esters. I. Nucleophilic Reactions of Amines with p-Nitrophenyl Sulfate.
J. Am. Chem. Soc. 88, 5504−5511.
(78) Hoff, R. H., Larsen, P., and Hengge, A. C. (2001) Isotope effects
and medium effects on sulfuryl transfer reactions. J. Am. Chem. Soc. 123,
9338−9344.
(59) Zhang, Y. L., Hollfelder, F., Gordon, S. J., Chen, L., Keng, Y. F.,
Wu, L., Herschlag, D., and Zhang, Z. Y. (1999) Impaired transition state
complementarity in the hydrolysis of O-arylphosphorothioates by
protein-tyrosine phosphatases. Biochemistry 38, 12111−12123.
(60) Williams, S. J., Denehy, E., and Krenske, E. H. (2014)
Experimental and theoretical insights into the mechanisms of sulfate
(79) Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz,
M. A., and von Figura, K. (1998) Posttranslational formation of
formylglycine in prokaryotic sulfatases by modification of either
cysteine or serine. J. Biol. Chem. 273, 25560−25564.
(80) Hengge, A. C. (2002) Isotope effects in the study of phosphoryl
and sulfuryl transfer reactions. Acc. Chem. Res. 35, 105−112.
O
Biochemistry XXXX, XXX, XXX−XXX