Organic Letters
Letter
(3) Janssen-Muller, D.; Singha, S.; Lied, F.; Gottschalk, K.; Glorius,
2016, 6, 4983−4988. (c) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett,
J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437−440.
(d) Cassani, C.; Bergonzini, G.; Wallentin, C.-J. Org. Lett. 2014, 16,
4228−4231. (e) Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. J. Am.
Chem. Soc. 2015, 137, 11340−8. (f) Zhou, Q.-Q.; Guo, W.; Ding, W.;
Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015,
54, 11196−11199. (g) Le Vaillant, F.; Courant, T.; Waser, J. Angew.
Chem., Int. Ed. 2015, 54, 11200−11204.
F. Angew. Chem., Int. Ed. 2017, 56, 6276−6279.
́
(4) (a) Terrier, F. Chem. Rev. 1982, 82, 77−152. (b) Fernandez, I.;
Frenking, G.; Uggerud, E. J. Org. Chem. 2010, 75, 2971−2980.
(c) Jones, G. O.; Al Somaa, A.; O’Brien, J. M.; Albishi, H.; Al-Megren,
H. A.; Alabdulrahman, A. M.; Alsewailem, F. D.; Hedrick, J. L.; Rice,
J. E.; Horn, H. W. J. Org. Chem. 2013, 78, 5436−5443.
(5) (a) Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649−9667.
(b) Chen, Z. M.; Zhang, X. M.; Tu, Y. Q. Chem. Soc. Rev. 2015, 44,
5220−45. (c) Allart-Simon, I.; Gerard, S.; Sapi, J. Molecules 2016, 21,
878. (d) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018,
47, 654−667. (e) Loven, R.; Speckamp, W. N. Tetrahedron Lett. 1972,
13, 1567−1570. (f) Motherwell, W. B.; Pennell, A. M. K. J. Chem. Soc.,
(14) (a) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.;
Rovis, T. Chem. Rev. 2015, 115, 9307−9387. (b) Menon, R. S.; Biju,
A. T.; Nair, V. Chem. Soc. Rev. 2015, 44, 5040−5052.
(15) (a) Garrera, H. A.; Cosa, J. J.; Previtali, C. M. J. Photochem.
Photobiol., A 1991, 56, 267−274. (b) Wakasa, M.; Sakaguchi, Y.;
Nakamura, J.; Hayashi, H. J. Phys. Chem. 1992, 96, 9651−9656.
(c) Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D.
Angew. Chem., Int. Ed. 2015, 54, 14017−14021.
(16) The 1,6-ipso addition adduct was observed in 16% yield; see
(17) (a) Chuzel, O.; Roesch, A.; Genet, J.-P.; Darses, S. J. Org. Chem.
2008, 73, 7800−7802. (b) Li, X.; Zou, G. Chem. Commun. 2015, 51,
5089−5092.
(18) The 1,6-epso addition adduct was obtained in 24% yield; see
̈
Chem. Commun. 1991, 877−879. (g) Bossart, M.; Fassler, R.;
Schoenberger, J.; Studer, A. Eur. J. Org. Chem. 2002, 2002, 2742−
2757. (h) Gao, P.; Shen, Y. W.; Fang, R.; Hao, X. H.; Qiu, Z. H.;
Yang, F.; Yan, X. B.; Wang, Q.; Gong, X. J.; Liu, X. Y.; Liang, Y. M.
Angew. Chem., Int. Ed. 2014, 53, 7629−33. (i) Kong, W.; Merino, E.;
Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078−82. (j) Ni, S.;
Zhang, Y.; Xie, C.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2015, 17,
5524−7. (k) Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q. Nat.
Commun. 2015, 6, 7011. (l) Zhou, T.; Luo, F. X.; Yang, M. Y.; Shi, Z.
J. J. Am. Chem. Soc. 2015, 137, 14586−9. (m) Hossian, A.; Jana, R.
Org. Biomol. Chem. 2016, 14, 9768−9779. (n) Chen, S.; Li, D. Y.;
Jiang, L. L.; Liu, K.; Liu, P. N. Org. Lett. 2017, 19, 2014−2017.
(o) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc.
2017, 139, 1388−1391. (p) Douglas, J. J.; Albright, H.; Sevrin, M. J.;
Cole, K. P.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2015, 54,
14898−14902. (q) Brachet, E.; Marzo, L.; Selkti, M.; Konig, B.;
Belmont, P. Chem. Sci. 2016, 7, 5002−5006. (r) Shu, W.; Genoux, A.;
Li, Z.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 10521−10524.
(s) Wang, S. F.; Cao, X. P.; Li, Y. Angew. Chem., Int. Ed. 2017, 56,
13809−13813. (t) Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J.
Science 2018, 361, 1369. (u) Wang, N.; Gu, Q.-S.; Li, Z.-L.; Li, Z.;
Guo, Y.-L.; Guo, Z.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57,
14225−14229.
(20) (a) Togo, H.; Katohgi, M. Synlett 2001, 2001, 0565−0581.
(b) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem.
Commun. 2013, 49, 5672−5674. (c) He, Z.; Bae, M.; Wu, J.; Jamison,
T. F. Angew. Chem., Int. Ed. 2014, 53, 14451−14455. (d) Huang, H.;
Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881−4. (e) Yang,
B.; Xu, X. H.; Qing, F. L. Org. Lett. 2016, 18, 5956−5959. (f) Tang,
W. K.; Feng, Y. S.; Xu, Z. W.; Cheng, Z. F.; Xu, J.; Dai, J. J.; Xu, H. J.
Org. Lett. 2017, 19, 5501−5504. (g) Wang, D.; Zhang, L.; Luo, S. Org.
Lett. 2017, 19, 4924−4927. (h) Zhang, J.-J.; Cheng, Y.-B.; Duan, X.-
H. Chin. J. Chem. 2017, 35, 311−315. (i) Wang, J.; Li, G.-X.; He, G.;
Chen, G. Asian J. Org. Chem. 2018, 7, 1307−1310.
(21) Vogler, T.; Studer, A. Synthesis 2008, 2008, 1979−1993.
(22) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426−5434.
(23) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N.
V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600−1601.
(24) Bordwell, F. G.; Cheng, J. J. Am. Chem. Soc. 1991, 113, 1736−
1743.
(6) Motherwell, W. B.; Vazquez, S. Tetrahedron Lett. 2000, 41,
9667−9671.
(7) (a) van Scheppingen, W.; Dorrestijn, E.; Arends, I.; Mulder, P.;
Korth, H.-G. J. Phys. Chem. A 1997, 101, 5404−5411. (b) Lias, S. G.;
Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W.
G. J. Phys. Chem. Ref. Data 1988, 17, 1−861.
(8) (a) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40,
5030−5048. (b) Gooßen, L. J.; Rudolphi, F.; Oppel, C.; Rodríguez,
N. Angew. Chem., Int. Ed. 2008, 47, 3043−3045. (c) Miao, J.; Ge, H.
Synlett 2014, 25, 911−919.
(25) (a) Hu, C.; Chen, Y. Tetrahedron Lett. 2015, 56, 884−888.
(b) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem.
Soc. 2014, 136, 2280−2283. (c) Yang, J.; Zhang, J.; Qi, L.; Hu, C.;
Chen, Y. Chem. Commun. 2015, 51, 5275−5278. (d) Bloom, S.; Liu,
̈
C.; Kolmel, D. K.; Qiao, J. X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.;
MacMillan, D. W. C. Nat. Chem. 2017, 10, 205. (e) Teders, M.;
(9) (a) Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A.
Angew. Chem., Int. Ed. 2014, 53, 502−506. (b) Chu, L.; Lipshultz, J.
M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 7929−
7933. (c) Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed.
2015, 54, 7872−6. (d) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem.,
Int. Ed. 2015, 54, 8374−8377. (e) Jia, K.; Pan, Y.; Chen, Y. Angew.
Chem., Int. Ed. 2017, 56, 2478−2481. (f) Mukherjee, S.; Garza-
Sanchez, R. A.; Tlahuext-Aca, A.; Glorius, F. Angew. Chem., Int. Ed.
2017, 56, 14723−14726. (g) Xu, S.-M.; Chen, J.-Q.; Liu, D.; Bao, Y.;
Liang, Y.-M.; Xu, P.-F. Org. Chem. Front. 2017, 4, 1331−1335.
(h) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2017, 139,
11353−11356. (i) Zhang, M.; Xie, J.; Zhu, C. Nat. Commun. 2018, 9,
3517.
́
́
̈
Henkel, C.; Anhauser, L.; Strieth-Kalthoff, F.; Gomez-Suarez, A.;
Kleinmans, R.; Kahnt, A.; Rentmeister, A.; Guldi, D.; Glorius, F. Nat.
Chem. 2018, 10, 981−988. (f) The cosolvent (acetone or
acetonitrile) is used for the solubility of organic compounds.
(26) Wang, H.; Li, W.-G.; Zeng, K.; Wu, Y.-J.; Zhang, Y.; Xu, T.-L.;
Chen, Y. Angew. Chem., Int. Ed. 2019, 58, 561−565.
(10) Liu, M. S.; Huang, H. C.; Chen, Y. Y. Chin. J. Chem. 2018, 36,
1209−1212.
(11) (a) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116,
10075−10166. (b) Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B.
Angew. Chem., Int. Ed. 2018, 57, 10034−10072.
(12) Entries 4 and 5 of Table 1 with 0.4 equiv trifluoroacetic gave
significantly decreased 22% and 10% yields, respectively. See the
(13) (a) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed.
2015, 54, 15632−15641. (b) Huang, H.; Jia, K.; Chen, Y. ACS Catal.
D
Org. Lett. XXXX, XXX, XXX−XXX