A
R
T
I
C
L
E
N AT URE CO M MU N ICAT I ON S | D O I: 10 . 10 38/ s414 67 -01 8- 047 7 2 - x
Received: 3 April 2018 Accepted: 12 May 2018
28. Rudolf, J. D., Chang, C. Y., Ma, M. & Shen, B. Cytochromes P450 for natural
product biosynthesis in Streptomyces: sequence, structure, and function. Nat.
Prod. Rep. 34, 1141–1172 (2017).
29. Poulos, T. L., Finzel, B. C. & Howard, A. J. High-resolution crystal structure of
cytochrome P450cam. J. Mol. Biol. 195, 687–700 (1987).
3
0. Sherman, D. H. et al. The structural basis for substrate anchoring, active site
selectivity, and product formation by P450 PikC from Streptomyces
venezuelae. J. Biol. Chem. 281, 26289–26297 (2006).
References
1
2
3
4
.
.
.
.
Riva, S. & Silvestri, L. G. Rifamycins: a general view. Ann. Rev. Microbiol. 26,
3
3
3
3
1. Tang, M. C., Zou, Y., Watanabe, K., Walsh, C. T. & Tang, Y. Oxidative
199–224 (1972).
cyclization in natural product biosynthesis. Chem. Rev. 117, 5226–5333
Floss, H. G. & Yu, T. W. Rifamycin-mode of action, resistance, and
biosynthesis. Chem. Rev. 105, 621–632 (2005).
Calvori, C., Frontali, L., Leoni, L. & Tecce, G. Effect of rifamycin on protein
synthesis. Nature 207, 417–418 (1965).
(
2017).
2. Grandner, J. M., Cacho, R. A., Tang, Y. & Houk, K. N. Mechanism of the
P450-catalyzed oxidative cyclization in the biosynthesis of griseofulvin. ACS
Catal. 6, 4506–4511 (2016).
3. Seong, B. L., Son, H. J., Mheen, T. I. & Han, M. H. Microbial transformation of
rifamycin B: a new synthetic approach to rifamycin derivatives. J. Antibiot.36,
August, P. R. et al. Biosynthesis of the ansamycin antibiotic rifamycin:
deductions from the molecular analysis of the rif biosynthetic gene cluster of
Amycolatopsis mediterranei S699. Chem. Biol. 5, 69–79 (1998).
Schupp, T., Toupet, C., Engel, N. & Goff, S. Cloning and sequence analysis of
the putative rifamycin polyketide synthase gene cluster from Amycolatopsis
mediterranei. FEMS Microbiol. Lett. 159, 201–207 (1998).
Tang, L., Yoon, Y. J., Choi, C. Y. & Hutchinson, C. R. Characterization of the
enzymatic domains in the modular polyketide synthase involved in rifamycin
B biosynthesis by Amycolatopsis mediterranei. Gene 216, 255–265 (1998).
White, R. J., Martinelli, E. & Lancini, G. Ansamycin biogenesis: studies on a
novel rifamycin isolated from a mutant strain of Nocardia mediterranei. Proc.
Natl. Acad. Sci. USA 71, 3260–3264 (1974).
1402–1404 (1983).
5
6
7
.
.
.
4. Han, M. H., Seong, B. L., Son, H. J. & Mheen, T. I. Rifamycin B oxidase from
Monocillium spp., a new type of diphenol oxidase. FEBS Lett. 151, 36–40
(
1983).
35. Liu, Z. et al. Reduction of quinones by NADH catalyzed by organoiridium
complexes. Angew. Chem. Int. Ed. 52, 4194–4197 (2013).
36. Peng, C. et al. Hijacking a hydroxyethyl unit from a central metabolic ketose
into a nonribosomal peptide assembly line. Proc. Natl. Acad. Sci. USA 109,
8540–8545 (2012).
3
7. Craig, J. W. & Brady, S. F. Discovery of a metagenome-derived enzyme that
produces branched-chain acyl-(acyl-carrier-protein)s from branched-chain
alpha-keto acids. Chembiochem 12, 1849–1853 (2011).
8
.
.
Floss, H. G. From ergot to ansamycins-45 years in biosynthesis. J. Nat. Prod.
6
9, 158–169 (2006).
9
Xu, J., Wan, E., Kim, C. J., Floss, H. G. & Mahmud, T. Identification of
tailoring genes involved in the modification of the polyketide backbone of
rifamycin B by Amycolatopsis mediterranei S699. Microbiology 151,
3
8. Wilson, M. C., Gulder, T. A. M., Mahmud, T. & Moore, B. S. Shared
biosynthesis of the saliniketals and rifamycins in Salinispora arenicola is
controlled by the sare1259-encoded cytochrome P450. J. Am. Chem. Soc. 132,
2515–2528 (2005).
12757–12765 (2010).
1
0. Xiong, Y., Wu, X. & Mahmud, T. A homologue of the Mycobacterium
tuberculosis PapA5 Protein, Rif-Orf20, is an aetyltransferase involved in the
biosynthesis of antitubercular drug rifamycin B by Amycolatopsis mediterranei
S699. Chembiochem 6, 834–837 (2005).
1. Oppolzer, W., Prelog, V. & Sensi, P. The composition of rifamycin B and
related rifamycins. Experientia 20, 336–339 (1964).
3
9. Saxena, A., Kumari, R., Mukherjee, U., Singh, P. & Lal, R. Draft genome
sequence of the rifamycin producer Amycolatopsis rifamycinica DSM 46095.
Genome Announc. 2, e00662-14 (2014).
4
0. Huang, H. et al. Micromonospora rifamycinica sp. nov., a novel actinomycete
from mangrove sediment. Int. J. Syst. Evol. Microbiol. 58, 17–20 (2008).
1. Promnuan, Y., Kudo, T., Ohkuma, M. & Chantawannakul, P. Actinomadura
apis sp. nov., isolated from a honey bee (Apis mellifera) hive, and the
reclassification of Actinomadura cremea subsp. rifamycini Gauze et al. 1987 as
Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov. Int. J. Syst.
Evol. Microbiol. 61, 2271–2277 (2011).
1
1
1
4
2. Funayama, S. & Cordell, G. A. in Studies in Natural Products Chemistry Vol.
23 (ed. Rahman Atta, u. r.) 51–106 (Elsevier, 2000).
3. Lancini, G. C., Gallo, G. G., Sartori, G. & Sensi, P. Isolation and structure of
rifamycin L and its biogenetic relationship with other rifamycins. J. Antibiot.
(
Tokyo) 22, 369–377 (1969).
4
4
4
4
4
4
2. Du, L. et al. Characterization of a unique pathway for 4-cresol catabolism
1
4. Sugawara, S., Karasawa, K., Watanabe, M. & Hidaka, T. Production of
rifamycin O by Streptomyces 4107 A2. J. Antibiot. 17, 29–32 (1964).
5. Ghisalba, O., Roos, R., Schupp, T. & Nuesch, J. Transformation of rifamycin S
into rifamycins B and L. A revision of the current biosynthetic hypothesis. J.
Antibiot. 35, 74–80 (1982).
6. Zhao, W. et al. Complete genome sequence of the rifamycin SV-producing
Amycolatopsis mediterranei U32 revealed its genetic characteristics in
phylogeny and metabolism. Cell Res. 20, 1096–1108 (2010).
7. Yuan, H. et al. Two genes, rif15 and rif16, of the rifamycin biosynthetic gene
cluster in Amycolatopsis mediterranei likely encode a transketolase and a P450
monooxygenase, respectively, both essential for the conversion of rifamycin
SV into B. Acta Biochim. Biophys. Sin. 43, 948–956 (2011).
8. Zhang, X. & Li, S. Expansion of chemical space for natural products by
uncommon P450 reactions. Nat. Prod. Rep. 34, 1061–1089 (2017).
9. Guengerich, F. P. Common and uncommon cytochrome P450 reactions related
to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650 (2001).
0. Kochetov, G. A. & Solovjeva, O. N. Structure and functioning mechanism of
transketolase. Biochim. Biophys. Acta 1844, 1608–1618 (2014).
initiated by phosphorylation in Corynebacterium glutamicum. J. Biol. Chem.
2
91, 6583–6594 (2016).
1
3. Omura, T. & Sato, R. The carbon monoxide-binding pigment of liver
microsomes II. Solubilization, purification, and properties. J. Biol. Chem. 239,
2379–2385 (1964).
1
4. Bradford, M. M. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Anal. Biochem. 72, 248–254 (1976).
5. Li, S., Podust, L. M. & Sherman, D. H. Engineering and analysis of a self-
sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase
domain. J. Am. Chem. Soc. 129, 12940–12941 (2007).
1
6. Tsuboi, K. K., Estrada, J. & Hudson, P. B. Enzymes of the human erythrocyte.
IV. Phosphoglucose isomerase, purification and properties. J. Biol. Chem. 231,
9–29 (1958).
7. Hauck, T., Landmann, C., Bruhlmann, F. & Schwab, W. Formation of
-methyl-4-hydroxy-3[2H]-furanone in cytosolic extracts obtained from
1
1
2
2
2
1
5
Zygosaccharomyces rouxii. J. Agric. Food Chem. 51, 1410–1414 (2003).
8. Otwinowski, Z. & Minor, W. Methods in Enzymology. 276, 307–326
Academic Press, 1997).
9. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40,
58–674 (2007).
0. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of
macromolecular structures by the maximum-likelihood method. Acta
Crystallogr. D. 53, 240–255 (1997).
4
4
5
1. Nelson, D. R. The cytochrome P450 homepage. Hum. Genomics 4, 59–65
(
(
2009).
2. Ma, L. et al. Reconstitution of the in vitro activity of the cyclosporine-specific
P450 hydroxylase from Sebekia benihana and development of a heterologous
whole-cell biotransformation system. Appl. Environ. Microbiol. 81, 6268–6275
6
(
2015).
2
2
3. Scrutton, M. C. Divalent metal ion catalysis of the oxidation of rifamycin SV
to rifamycin S. FEBS Lett. 78, 216–220 (1977).
51. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development
of Coot. Acta Crystallogr. D. 66, 486–501 (2010).
4. Lindqvist, Y., Schneider, G., Ermler, U. & Sundström, M. Three-dimensional
structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 Å
resolution. EMBO J. 11, 2373–2379 (1992).
52. Collaborative Computational Project, Number 4. The CCP4 suite: programs
for protein crystallography. Acta Crystallogr. D. 50, 760–763 (1994).
2
2
2
5. Kochetov, G. A. Structure of the active center of transketolase*. Ann. N. Y.
Acad. Sci. 378, 306–311 (1982).
Acknowledgements
6. Dampier, M. F., Chen, C. W. & Whitlock, H. W. Jr. Substituent effects on the
solution conformation of rifamycin S. J. Am. Chem. Soc. 98, 7064–7069 (1976).
7. Gotoh, O. Substrate recognition sites in cytochrome P450 family 2 (CYP2)
proteins inferred from comparative analyses of amino acid and coding
nucleotide sequences. J. Biol. Chem. 267, 83–90 (1992).
This work was supported by the Shandong Provincial Natural Science Foundation
(
(
ZR2017ZB0207 to W.Z. and S.L.), the National Natural Science Foundation of China
grants 81741155, 31422002, and 21472204 to S.L., 31600036 to F.Q., 21572243 to Y.X.,
3
1430004 and 31670058 to G.Z.), Chinese Academy of Sciences (grants QYZDB-SSW-
SMC042 to S.L. and XDPB0402 to Y.X.), and the Science and Technology Commission of
8
N A TU RE CO MMUN I C A TI O N S | ( 2 0 1 8) 9: 2 3 4 2 | D OI : 1 0 . 1 0 3 8/ s 4 1 46 7 - 0 1 8- 0 4 7 7 2 - x | w ww . na tu r e . c o m /n atu r e c o m m u n ic ati o n s