Please do not adjust margins
Journal of Materials Chemistry C
Page 6 of 8
DOI: 10.1039/C8TC01182F
ARTICLE
Journal Name
Ir-me (yield: 35%) 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.1 There are no conflicts to declare.
Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.77 ꢀ 7.74 (m, 1H), 7.74 ꢀ 7.71
Notes and references
(m, 1H), 7.71 ꢀ 7.69 (m, 2H), 7.68 (d, J = 3.7 Hz, 2H), 7.63 (d, J =
5.8 Hz, 1H), 7.55 (d, J = 5.5 Hz, 1H), 7.26 (s, 1H), 7.21 (dd, J = 8.1,
1.2 Hz, 1H), 7.17 (dd, J = 8.1, 0.9 Hz, 1H), 7.08 ꢀ 7.05 (m, 1H), 6.98 1. Y. Feng, X. Zhuang, D. Zhu, Y. Liu, Y. Wang and M. R. Bryce,
ꢀ 6.96 (m, 1H), 6.90 (dd, J = 9.8, 4.5 Hz, 1H), 6.49 (t, J = 7.2 Hz,
J. Mater. Chem. C, 2016, 4, 10246ꢀ10252.
3H), 2.33 (s, 3H). HRMS (m/z): calcd for C33H22F6IrN5[M+H]+ 2. D. P. Gong, T. B. Gao, D. K. Cao and M. D. Ward, Dalton
796.1487, found 796.1484.
Trans., 2016, 46, 275ꢀ286.
Ir-cf3 (yield: 40%). H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 3. P. Li, Q.ꢀY. Zeng, H.ꢀZ. Sun, M. Akhtar, G.ꢀG. Shan, X.ꢀG.
1
7.9 Hz, 1H), 7.94 (t, J = 8.8 Hz, 2H), 7.87 (t, J = 8.2 Hz, 1H), 7.84ꢀ
7.79 (m, 2H), 7.77 (d, J = 7.1 Hz, 1H), 7.73 (d, J = 8.2 Hz, 2H), 7.65
Hou, F.ꢀS. Li and Z.ꢀM. Su, J. Mater. Chem. C, 2016, 4, 10464ꢀ
10470.
(d, J = 5.2 Hz, 1H), 7.53 ꢀ 7.47 (m, 1H), 7.25 (s, 1H), 7.20 (d, J = 8.1 4. Y. Wang, S. Wang, J. Ding, L. Wang, X. Jing and F. Wang,
Hz, 1H), 7.14 (t, J = 6.5 Hz, 3H), 6.99 (t, J = 6.2 Hz, 1H), 6.45 (s,
Chem. Commun., 2016, 53, 180ꢀ183.
1H), 6.40 (s, 1H). HRMS (m/z): calcd for C33H19F9IrN5[M +H]+ 5. Y. C. Zhu, L. Zhou, H. Y. Li, Q. L. Xu, M. Y. Teng, Y. X.
850.1204, found 850.1206.
Ir-py (yield: 38%). 1H NMR (400 MHz, CDCl3) δ 8.53 ꢀ 8.51 (m,
Zheng, J. L. Zuo, H. J. Zhang and X. Z. You, Adv. Mater., 2011,
23, 4041ꢀ4046.
1H), 7.96 (t, J = 8.5 Hz, 2H), 7.89 (d, J = 7.9 Hz, 1H), 7.81 (dd, J = 6. S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang, S. K. Kwon, J.
5.8, 0.8 Hz, 1H), 7.79 ꢀ 7.76 (m, 1H), 7.75 ꢀ 7.72 (m, 2H), 7.71 (s,
J. Kim and Y. H. Kim, J. Am. Chem. Soc., 2013, 135, 14321ꢀ
1H), 7.71 ꢀ 7.67 (m, 1H), 7.59 (dd, J = 7.2, 1.6 Hz, 1H), 7.57 ꢀ 7.51
14328.
(m, 1H), 7.41 (s, 1H), 7.26 (s, 2H), 7.23 (dd, J = 8.3, 1.3 Hz, 1H), 7. Q.ꢀD. Ou, L. Zhou, Y.ꢀQ. Li, S. Shen, J.ꢀD. Chen, C. Li, Q.ꢀK.
7.20 (dd, J = 8.2, 1.1 Hz, 1H), 7.05 ꢀ 7.03 (m, 1H), 7.03 ꢀ 7.00 (m,
1H), 6.98 ꢀ 6.96 (m, 1H), 6.93 ꢀ 6.91 (m, 1H), 6.56 (d, J = 0.8 Hz,
Wang, S.ꢀT. Lee and J.ꢀX. Tang, Adv. Funct. Mater., 2014, 24,
7249ꢀ7256.
1H), 6.53 (d,
C37H23F6IrN6[M + H]+ 859.1596, found 859.1591.
Ir-ph (yield: 36%). 1H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 7.6 9. H. H. Kuo, Y. T. Chen, L. R. Devereux, C. C. Wu, M. A. Fox,
J
=
0.7 Hz, 1H). HRMS(m/z): calcd for 8. C.ꢀH. Yang, M. Mauro, F. Polo, S. Watanabe, I. Muenster, R.
Fröhlich and L. De Cola, Chem. Mater., 2012, 24, 3684ꢀ3695.
Hz, 2H), 7.97 ꢀ 7.85 (m, 4H), 7.75 (dd, J = 13.3, 8.1 Hz, 4H), 7.67 ꢀ
7.57 (m, 2H), 7.33 (t, J = 6.6 Hz, 2H), 7.26 (s, 2H), 7.23 (d, J = 7.0
C. Y. Kuei, Y. Chi and G. H. Lee, Adv. Mater., 2017, 29.
1702464ꢀ1702471.
Hz, 2H), 7.10 (s, 2H), 6.99 (dd, J = 8.3, 4.8 Hz, 2H), 6.50 (d, J = 8.2 10. C. Fan, Y. Li, C. Yang, H. Wu, J. Qin and Y. Cao, Chem. Mater.,
Hz, 2H). HRMS (m/z): calcd for C38H24F6IrN5[M + H]+ 858.1643,
found 858.1640.
2012, 24, 4581ꢀ4587.
11. X. Yang, X. Xu, J. S. Dang, G. Zhou, C. L. Ho and W. Y. Wong,
Inorg. Chem., 2016, 55, 1720ꢀ1727.
12. X. Yang, G. Zhou and W. Y. Wong, Chem. Soc. Rev., 2015, 44,
8484ꢀ8575.
13. G. Tan, S. Chen, N. Sun, Y. Li, D. Fortin, W.ꢀY. Wong, H.ꢀS.
Kwok, D. Ma, H. Wu, L. Wang and P. D. Harvey, J. Mater.
Chem. C, 2013, 1, 808ꢀ821.
14. W.ꢀY. Wong and C.ꢀL. Ho, Coord. Chem. Rev., 2009, 253,
1709ꢀ1758.
15. L. M. Groves, C. Schotten, J. Beames, J. A. Platts, S. J. Coles,
P. N. Horton, D. L. Browne and S. J. A. Pope, Chem., 2017, 23,
9407ꢀ9418.
16. H.ꢀY. Li, L. Zhou, M.ꢀY. Teng, Q.ꢀL. Xu, C. Lin, Y.ꢀX. Zheng,
J.ꢀL. Zuo, H.ꢀJ. Zhang and X.ꢀZ. You, J. Mater. Chem. C, 2013,
1, 560ꢀ565.
17. J. Jayabharathi, V. Thanikachalam and R. Sathishkumar, New J.
Chem., 2015, 39, 235ꢀ245.
18. Y. Li, L. Zhou, Y. Jiang, R. Cui, X. Zhao, Y. Zheng, J. Zuo and
H. Zhang, RSC Adv., 2016, 6, 63200ꢀ63205.
19. X. Xu, X. Yang, J. Zhao, G. Zhou and W.ꢀY. Wong, Asian J.
Org. Chem., 2015, 4, 394ꢀ429.
20. X. Yang, G. Zhou and W.ꢀY. Wong, J. Mater. Chem. C, 2014, 2,
1760ꢀ1778.
21. G. Zhou, W. Y. Wong and X. Yang, Chem., an Asian J., 2011, 6,
1706ꢀ1727.
22. C.ꢀL. Ho and W.ꢀY. Wong, New J. Chem., 2013, 37, 1665ꢀ1683.
23. S. Lee, K.ꢀH. Kim, D. Limbach, Y.ꢀS. Park and J.ꢀJ. Kim, Adv.
Funct. Mater., 2013, 23, 4105ꢀ4110.
Conclusions
In summary, four efficient green emissive Ir(III) complexes (Ir-me,
Ir-cf3, Ir-py and Ir-ph) were obtained with 2ꢀ(4ꢀ
trifluoromethyl)phenylpyridine as main ligand and substituted 2ꢀ
(1Hꢀpyrazolꢀ5ꢀyl)pyridine derivatives as the ancillary ligands. Due
to the similar molecular structures, four materials exhibit little
different
photophysical,
thermal,
electrochemical
and
electroluminescent properties. Using these Ir(III) complexes as
dopants, the OLEDs showed high current efficiency with low
efficiency rollꢀoff. Especially, G1 device based on Ir-me complex
achieves the best device performances with the highest current
efficiency of 92 cd Aꢀ1 and the maximum EQE value of 28.90%.
Even at the brightness of 1000 cd mꢀ2, these efficiency values still
keep at 79.97 cd Aꢀ1 and 25.16%. This work proves an efficient
strategy to give the efficient green Ir(III) complexes by introducing a
variety of substituents into the ancillary ligands, which have
potential application in OLEDs.
Acknowledgments
This work was supported by the National Natural Science
Foundation of China (51773088) and the Natural Science
Foundation of Jiangsu Province (BY2016075ꢀ02).
Conflicts of interest
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins