ACCEPTED MANUSCRIPT
[
20] Zhang Y-M, Chen Y, Li Z-Q, Li N, Liu Y. Quinolinotriazole-β-cyclodextrin and its adamantanecarboxylic acid
complex as efficient water-soluble fluorescent Cd2+ sensors. Bioorg Med Chem. 2010;18(4):1415-20.
21] Li Y, Li L, Pu X, Ma G, Wang E, Kong J, et al. Synthesis of a ratiometric fluorescent peptide sensor for the
highly selective detection of Cd2+. Bioorg Med Chem Lett. 2012;22(12):4014-7.
22] Li Y, Chong H, Meng X, Wang S, Zhu M, Guo Q. A novel quinoline-based two-photon fluorescent probe for
detecting Cd2+in vitro and in vivo. Dalton Trans. 2012;41(20):6189-94.
23] Wang W, Wen Q, Zhang Y, Fei X, Li Y, Yang Q, et al. Simple naphthalimide-based fluorescent sensor for highly
sensitive and selective detection of Cd2+ and Cu2+ in aqueous solution and living cells. Dalton Trans.
013;42(5):1827-33.
24] Zhang L-K, Tong Q-X, Shi L-J. A highly selective ratiometric fluorescent chemosensor for Cd2+ ions. Dalton
Trans. 2013;42(24):8567-70.
25] Ye W, Wang S, Meng X, Feng Y, Sheng H, Shao Z, et al. A novel Zn2+ complex as the ratiometric two-photon
fluorescent probe for biological Cd2+ detection. Dyes and Pigments. 2014;101:30-7.
26] Lu C, Xu Z, Cui J, Zhang R, Qian X. Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under
Physiological pH Range:ꢀ A New Strategy to Discriminate Cadmium from Zinc. J Org Chem. 2007;72(9):3554-7.
27] Park SY, Yoon JH, Hong CS, Souane R, Kim JS, Matthews SE, et al. A Pyrenyl-Appended Triazole-Based
Calix[4]arene as a Fluorescent Sensor for Cd2+ and Zn2+. J Org Chem. 2008;73(21):8212-8.
28] Liu W, Xu L, Sheng R, Wang P, Li H, Wu S. A Water-Soluble “Switching On” Fluorescent Chemosensor of
Selectivity to Cd2+. Org Lett. 2007;9(19):3829-32.
29] Xue L, Liu Q, Jiang H. Ratiometric Zn2+ Fluorescent Sensor and New Approach for Sensing Cd2+ by
Ratiometric Displacement. Org Lett. 2009;11(15):3454-7.
30] Liu X-y, Liu D-y, Qi J, Cui Z-g, Chang H-x, He H-r, et al. A new fluorescent sensor for Cd2+ and its application in
living cells imaging. Tetrahedron Lett. 2015;56(11):1322-7.
31] Zhang L, Hu W, Yu L, Wang Y. Click synthesis of a novel triazole bridged AIE active cyclodextrin probe for
specific detection of Cd2+. Chem Commun. 2015;51(20):4298-301.
32] Ma Y, Wang F, Kambam S, Chen X. A quinoline-based fluorescent chemosensor for distinguishing cadmium
from zinc ions using cysteine as an auxiliary reagent. Sensors and Actuators B: Chemical. 2013;188:1116-22.
33] Jardim GAM, Calado HDR, Cury LA, da Silva Júnior EN. Synthesis of a Phenazine-Based 1,2,3-Triazole from
Naturally Occurring Naphthoquinone Designed as a Probe for Cd2+ Ions. European Journal of Organic Chemistry.
015;2015(4):703-9.
34] Ogundiran MB, Osibanjo O. Mobility and speciation of heavy metals in soils impacted by hazardous waste.
Chemical Speciation and Bioavailability. 2009;21(2):59-69.
35] Krishnamurti GSR, Huang PM, Van Rees KCJ, Kozak LM, Rostad HPW. Speciation of particulate-bound
Cadmium of soils and its bioavailability. Analyst. 1995;120(3):659-65.
36] Hatch DJ, Jones LHP, Burau RG. The effect of pH on the uptake of cadmium by four plant species grown in
flowing solution culture. Plant and Soil.105(1):121-6.
37] Bervoets L, Blust R. Effects of pH on cadmium and zinc uptake by the midge larvae Chironomus riparius.
Aquat Toxicol. 2000;49(1–2):145-57.
38] Franklin NM, Stauber JL, Markich SJ, Lim RP. pH-dependent toxicity of copper and uranium to a tropical
freshwater alga (Chlorella sp.). Aquat Toxicol. 2000;48(2–3):275-89.
39] Sandrin TR, Maier RM. Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene
biodegradation. Environ Toxicol Chem. 2002;21(10):2075-9.
40] Worden CR, Kovac WK, Dorn LA, Sandrin TR. Environmental pH affects transcriptional responses to cadmium
toxicity in Escherichia coli K-12 (MG1655). FEMS Microbiol Lett. 2009;293(1):58-64.
[
[
[
2
[
[
[
[
[
[
[
[
[
[
2
[
[
[
[
[
[
[
11