S. Zheng et al. / Tetrahedron Letters 48 (2007) 5883–5886
5885
O
N-containing carbonyl compounds. The understanding
of the reaction mechanism is ongoing in our laboratory.
IPrCuI
-H2O
+
CO/O2
2RNH2
RHN NHR
(1h-1l)
(2h-2l)
Acknowledgements
R = n-C3H7 2h, 86%; R = n-C4H9 2i, 96%; R = t-C4H9 2j, 93%;
R = cyclohexyl 2k, 19%; R = C6H5 2l, <5%
We are grateful to the Chinese National Sciences Foun-
dation (20533080) and The National Science Fund for
Distinguished Young Scholars (20625308) for financial
support.
Reaction condition : 0.01mmol of IPrCuI, 1mmol of amine,
dioxane (4ml), PCO =4.8MPa, PO2 =0.2MPa, 100 oC for 3h.
O
IPrCuI
RNH2
+
CO/O2
CH3OH
+
RHN OCH3
-H2O
(1h-1l)
(3h-3l)
Supplementary data
R = n-C3H7 3h, 98%; R = n-C4H9 3i, 98%; R = t-C4H9 3j, 93%;
R = cyclohexyl 3k, 89%; R = C6H5 3l, <10%
Experimental procedures and spectral data for the com-
pounds are given in the Supplementary data. Supple-
mentary data associated with this article can be found,
Reaction condition : 0.01mmol of IPrCuI, 1mmol of amine,
CH3OH (4ml), PCO =4.8MPa, PO2 =0.2MPa, 100 oC for 3h.
Scheme 2. Selective synthesis of urea and carbamate by IPrCuI
catalyzed oxidative carbonylation of primary amines under optimized
conditions.
References and notes
obtained from corresponding chiral b-aminoalcohols
without racemization based on the polarimetric charac-
terization (Table 2, entries 5 and 6). When 2-amino-
phenol (1g) was used as the reaction substrate, only
traces of product were observed (Table 2, entry 7). We
confirmed the main product 2-aminophenoxazin-3-one
(2g) was derived from an oxidative dimerization process
without CO incorporation.5c
1. (a) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5,
4011; (b) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem.
Rev. 1996, 96, 835; (c) Lohray, B. B.; Baskaran, S.; Rao,
B. S.; Reddy, B. Y.; Rao, I. N. Tetrahedron Lett. 1999, 40,
4855; (d) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama,
T. Angew. Chem., Int. Ed. 2002, 41, 3247; (e) Humphrey, J.
M.; Liao, Y. S.; Ali, A.; Rein, T.; Wong, Y. L.; Chen, H.
J.; Courtney, A. K.; Martin, S. F. J. Am. Chem. Soc. 2002,
124, 8584; (f) Catalytic Asymmetric Synthesis; Ojima, I.,
Ed.; Wiley: New York, 2000.
Further investigation showed that this efficient copper
NHC catalytic process could also be applied to the oxi-
dative carbonylation of primary amines to prepare the
corresponding ureas and carbamates with or without
CH3OH included in the catalytic cycle, the results are
shown in Scheme 2. Excellent isolated yields (86–98%)
of ureas and carbamates were obtained from n-propyl-
amine, n-butylamine and t-butylamine, respectively.
When cyclohexylamine is used as the substrate, the yield
of corresponding carbamate (3k) is good (89%), but its
activity toward preparation of urea (2k) was poor
(19%). GC–MS analysis shows that there is imine in
the reaction mixture, it indicates that there is an oxida-
tion reaction as a side reaction.12 The low yield of 1,3-
cyclohexylurea (2k) may be ascribed to the oxidation
of secondary amine to imine is faster than urea forma-
tion. It was regrettable that the present methodology
could not be applied to aromatic amines, it was clear
that the reactivity difference between the two classes of
amines must be due to the differences of their basicity
and nucleophilicy.11
2. (a) Bigi, F.; Maggi, R.; Sartori, G. Green Chem. 2000, 2,
140; (b) Maya, I.; Lopez, O.; Maza, S.; Fernandez-
Bolanos, J. G.; Fuentes, J. Tetrahedron Lett. 2003, 44,
8539; (c) Grzyb, J. A.; Batey, R. A. Tetrahedron Lett.
2003, 44, 7485; (d) Lemoucheux, L.; Rouden, J.; Ibazizene,
M.; Sobrio, F.; Lasne, M. C. J. Org. Chem. 2003, 68, 7289;
(e) Reddy, P. V. G.; Babu, Y. H.; Reddy, C. S. J.
Heterocycl. Chem. 2003, 40, 535.
3. Giannoccaro, P.; De Giglio, E.; Gargano, M.; Aresta, M.;
Ferragina, C. J. Mol. Catal. A: Chem. 2000, 157, 131.
4. (a) Shi, F.; Deng, Y.; SiMa, T.; Yang, H. Tetrahedron
Lett. 2001, 42, 2161; (b) Mulla, S. A. R.; Rode, C. V.;
Kelkar, A. A.; Gupte, S. P. J. Mol. Catal. 1997, 122, 103.
5. (a) Yang, H.; Deng, Y.; Shi, F. J. Mol. Catal. A: Chem.
2001, 176, 73; (b) Chiarotto, I.; Feroci, M. J. Org. Chem.
2003, 68, 7137; (c) Gabriele, B.; Mancuso, R.; Salerno, G.;
Costa, M. J. Org. Chem. 2003, 68, 601; (d) Gabriele, B.;
Salerno, G.; Mancuso, R.; Costa, M. J. Org. Chem. 2004,
69, 4741; (e) Gabriele, B.; Salerno, G.; Brindisi, D.; Costa,
M.; Chiusoli, G. P. Org. Lett. 2000, 2, 625; (f) Gabriele,
B.; Mancuso, R.; Salerno, G.; Costa, M. Chem. Commun.
2003, 4, 486.
6. Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem.
Soc. 1991, 113, 361.
7. (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34,
18; (b) Arduengo, A. J. Acc. Chem. Res. 1999, 32, 913; (c)
Herrmann, W. A.; Ko¨cher, C. Angew. Chem., Int. Ed.
1997, 36, 2162; (d) Herrmann, W. A. Angew. Chem., Int.
In summary, we have successfully developed an efficient
and simple copper N-heterocyclic carbene catalyst sys-
tem without any additive for the oxidative carbonyl-
ation of b-aminoalcohols and primary amines to
produce 2-oxazolidinones, disubstituted ureas and car-
bamates, respectively. It is the first time that a copper
complex was used in the oxidative carbonylation of ami-
no alcohols and amines. This methodology represents an
economic and environmentally benign non-phosgene
alternative for the preparation of these three important
`
´
Ed. 2002, 41, 1290; (e) Dıez-Gonzalez, S.; Nolan, S. P.
Annu. Rep. Prog. Chem., Sect. B 2005, 101, 171.
8. (a) Okuyama, K.; Sugiyama, J.; Ngahata, R.; Asai, M.;
Ueda, M.; Takeuchi, K. J. Mol. Catal. A: Chem. 2003,
203, 21; (b) Okuyama, K.; Sugiyama, J.; Ngahata, R.;
Asai, M.; Ueda, M.; Takeuchi, K. Green Chem. 2003, 5,
563; (c) Bortenschlager, M.; Schutz, J.; Preysing, D. V.;
¨