condensation of 2-aminobenzenethiols with carboxylic
acids or aldehydes is the most common. However, most
of these transformations involve the use of harsh reaction
conditions, such as high reaction temperature or strong
acidic or oxidative conditions (Figure 2a).6 An alternative
method is the cyclization of thioformanilides, which is
performed with the aid of transition-metal catalysts, radi-
cal condition, or Jacobson’s method.7 However, these
methods usually suffer from low functional group toler-
ance since in most cases the preparation of thioformani-
lides requires the use of P4S10 or Lawesson’s reagent.
Meanwhile, Ma and co-workers developed a copper-
catalyzed synthesis of benzothiazoles via coupling reac-
On the basis of the known ability of transition metals to
activate nitriles9 and recently developed copper-catalyzed
method for the construction of heterocycles or γ-lactones,10
we envisioned a direct synthesis of the substituted
benzothiazole by the reaction of 2-aminobenzenethiol
and nitriles involving transition-metal-catalyzed CÀS
and CdN bond formation. To explore this approach,
we selected 2-aminobenzenethiol (1a) and benzonitrile
(2a) for reaction development and screened several transi-
tion-metal catalysts in common solvents for their catalytic
activity. When 1a and 2a were reacted in the presence of 10
mol % of CuI at 80 °C for 6 h, 2-phenylbenzo[d]thiazole
(3a) was obtained in 38% yield (Table 1, entry 1). After
metal catalyst evaluation, we found that Cu(OAc)2 was
the best and afforded 3a with 81% GC yield (entry 6),
while other metals just led to low yields (entries 2À5). In
the absence of a metal source, no product formation was
observed (entry 7). Further investigation revealed that the
base played a critical role in this transformation (entries
8À12). Except for Et3N, almost all kinds of bases, includ-
ing NaOAc, NaHCO3, Na2CO3, NaOH, and t-BuONa,
were ineffective. The effects of different solvents were also
studied (entries 13 and 14). Ethanol was found to be the
best solvent, and the yield reached 86% (entry 14). Thus,
the optimal catalytic conditions consist of Cu(OAc)2
(10 mol %) and Et3N (1.0 equiv) in ethanol at 70 °C for 6 h.
tions of 2-haloanilides and Na2S 9H2O to solve this
3
problem.8 More recently, Lewis-acid-catalyzed cyclization
of orthoesters with 2-aminobenzenethiols has been re-
ported,5d but this reaction also needs the preparation steps
for the starting materials (Figure 2b). Therefore, a new
strategy for the synthesis of substituted benzothiazoles
from readily available materials under mild reaction con-
ditions needs to be explored (Figure 2c).
Table 1. Optimization of the Reaction Conditionsa
Figure 2. Strategies for the synthesis of benzothiazoles.
entry catalyst
base
Et3N
solvent
temp (°C) yieldb (%)
1
2
CuI
1,4-dioxane
1,4-dioxane
1,4-dioxane
1,4-dioxane
1,4-dioxane
1,4-dioxane
1,4-dioxane
1,4-dioxane
80
80
80
80
80
80
80
80
80
80
80
80
100
70
50
90
38
27
29
3
CuCl
ZnCl2
FeCl3
CuCl2
Et3N
Et3N
Et3N
Et3N
(6) (a) Riadi, Y.; Mamouni, R.; Azzalou, R.; Haddad, M.; Routier,
S.; Guillaumet, G.; Lazar, S. Tetrahedron Lett. 2011, 52, 3492. (b) Bose,
D. S.; Idrees, M. Synthesis 2010, 398. (c) Chen, F.; Shen, C.; Yang, D.
Tetrahedron Lett. 2011, 52, 2128. (d) Kangani, C.; Kelley, D.; Day, B.
Tetrahedron Lett. 2006, 47, 6497. (e) Wang, Y.; Sarris, K.; Sauer, D.;
Djuric, S. Tetrahedron Lett. 2006, 47, 4823. (f) Seijas, J.; Vazquez-Tato,
M.; Carballido-Reboredo, M.; Crecente-Campo, J.; Romar-Lopez, L.
Synlett 2007, 313.
(7) (a) Joyce, L. L.; Evindar, G.; Batey, R. A. Chem. Commun. 2004,
446. (b) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802. (c)
Wang, J.; Peng, F.; Jiang, J.; Lu, Z.; Wang, L.; Bai, J.; Pan, Y.
Tetrahedron Lett. 2008, 49, 467. (d) Inamoto, K.; Hasegawa, C.; Hiroya,
K.; Doi, T. Org. Lett. 2008, 10, 5147. (e) Saha, P.; Ramana, T.; Purkati,
N.; Ali, M. A.; Paul, R.; Punniyamurthy, T. J. Org. Chem. 2009, 74,
8719. (f) Bowman, W. R.; Heaney, H.; Jordan, B. M. Tetrahedron 1991,
47, 10119. (g) Downer, N. K.; Jackson, Y. A. Org. Biomol. Chem. 2004,
2, 3039.
3
4
5
41
81
np
np
np
np
np
np
72
86
42
86
6
Cu(OAc)2 Et3N
Et3N
7
8
Cu(OAc)2 NaOAc
9
Cu(OAc)2 NaHCO3 1,4-dioxane
Cu(OAc)2 Na2CO3 1,4-dioxane
10
11
12
13
14
15
16
Cu(OAc)2 NaOH
1,4-dioxane
Cu(OAc)2 t-BuONa 1,4-dioxane
Cu(OAc)2 Et3N
Cu(OAc)2 Et3N
Cu(OAc)2 Et3N
Cu(OAc)2 Et3N
toluene
ethanol
ethanol
ethanol
(8) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew.
Chem., Int. Ed. 2009, 48, 4222.
(9) (a) Ueda, S.; Nagasawa, H. J. Am. Chem. Soc. 2009, 131, 15080.
(b) Neumann, J. J.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49,
7790. (c) Suri, M.; Jousseaume, T.; Neumann, J. J.; Glorius, F. Green
Chem. 2012, 14, 2193.
a Conditions: 1a (0.3 mmol), 2a (0.3 mmol), catalyst (10 mol %), base
(0.3 mmol), solvent (2.5 mL), 6 h. b GC yield based on 2a using dodecane
as internal standard.
(10) (a) Huang, L.; Jiang, H.; Qi, C.; Liu, X. J. Am. Chem. Soc. 2010,
132, 17652. (b) Qi, C.; Jiang, H.; Huang, L.; Yuan, G.; Ren, Y. Org. Lett.
2011, 13, 5520. (c) Li, X.; Huang, L.; Chen, H.; Wu, W.; Huang, H.;
Jiang, H. Chem. Sci. 2012, 3, 3463. (d) Jiang, H.; Zeng, W.; Li, Y.; Wu,
W.; Huang, L.; Fu, W. J. Org. Chem. 2012, 77, 5179. (e) Guru, M. M.;
Ali, M. A.; Punniyamurthy, T. Org. Lett. 2011, 13, 1194. (f) Kumar,
R. K.; Ali, M. A.; Punniyamurthy, T. Org. Lett. 2011, 13, 2102. (g) Guru,
M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.
With the optimum reaction conditions in hand, a wide
range of aromatic nitriles and substituted 2-amino-
benzenethiols were examined to explore the scope of the
subsrrates, and the representative results are sum-
marized in Table 2. Generally, benzonitriles containing
B
Org. Lett., Vol. XX, No. XX, XXXX