Communication
ChemComm
cross-coupling reactions co-catalyzed by Cu(I) or Au(I),18 and the
Negishi coupling reaction is also thought to benefit from Pd(II)–
Zn(II) bond formation.19 Very recently, coupling of alkynes
mediated by dual gold catalysis has been proposed to involve
a di-gold(I) key complex exhibiting d10–d10 aurophilic interactions.20
Despite the fact that aurophilic interactions are much stronger than
cuprophilic interactions (15 vs. 4 kcal molÀ1),21 our findings suggest
that the latter can also foster ligand redistribution and organic
group transfer.
Angew. Chem., Int. Ed., 2002, 41, 3263; (e) X. Y. Yang and P. Knochel,
Synlett, 2004, 81–84.
2 (a) H. Gilman, R. G. Jones and L. A. Woods, J. Org. Chem., 1952, 17,
1630–1634; (b) D. B. Grotjahn, D. T. Halfen, L. M. Ziurys and
A. L. Cooksy, J. Am. Chem. Soc., 2004, 126, 12621–12627.
3 H. Hope, M. M. Olmstead, P. P. Power, J. Sandell and X. Xu, J. Am.
Chem. Soc., 1985, 107, 4337–4338.
¨
4 A. Alexakis, J. E. Backvall, N. Krause, O. Pamies and M. Dieguez,
Chem. Rev., 2008, 108, 2796–2823.
5 R. M. Gschwind, Chem. Rev., 2008, 108, 3029–3053.
6 (a) S. H. Bertz, R. A. Hardin and C. A. Ogle, J. Am. Chem. Soc., 2013,
135, 9656–9658; (b) S. H. Bertz, R. A. Hardin, M. D. Murphy and
C. A. Ogle, Chem. Commun., 2013, 49, 3010–3012; (c) M. D. Murphy,
C. A. Ogle and S. H. Bertz, Chem. Commun., 2005, 854–856; (d) M.
Neumeier and R. M. Gschwind, J. Am. Chem. Soc., 2014, 136,
5765–5772; (e) W. Henze, T. Gartner and R. M. Gschwind, J. Am. Chem.
Soc., 2008, 130, 13718–13726; ( f ) A. Putau and K. Koszinowski,
Organometallics, 2011, 30, 4771–4778; (g) A. Putau, M. Wilken and
K. Koszinowski, Chem. – Eur. J., 2013, 19, 10992–10999.
7 (a) A. Miyashita and A. Yamamoto, Bull. Chem. Soc. Jpn., 1977, 50,
1102–1108; (b) A. Miyashita, T. Yamamoto and A. Yamamoto, Bull.
Chem. Soc. Jpn., 1977, 50, 1109–1117; (c) D. F. Dempsey and G. S.
Girolami, Organometallics, 1988, 7, 1208–1213; (d) P. S. Coan, K. Folting,
J. C. Huffman and K. G. Caulton, Organometallics, 1989, 8, 2724–2728.
8 N. P. Mankad, T. G. Gray, D. S. Laitar and J. P. Sadighi, Organo-
metallics, 2004, 23, 1191–1193.
9 F. Schaper, S. R. Foley and R. F. Jordan, J. Am. Chem. Soc., 2004, 126,
2114–2124.
10 L. A. Goj, E. D. Blue, C. Munro-Leighton, T. B. Gunnoe and J. L. Petersen,
Inorg. Chem., 2005, 44, 8647–8649.
11 (a) E. Diana, O. Gambino, R. Rossetti, P. L. Stanghellini, T. Albiez,
W. Bernhardt and H. Vahrenkamp, Spectrochim. Acta, Part A, 1993,
49, 1247–1259; (b) P. Krohmer and J. Goubeau, Z. Anorg. Allg. Chem.,
1969, 369, 238–248.
12 S. H. Bertz, R. A. Hardin, T. J. Heavey and C. A. Ogle, Angew. Chem.,
Int. Ed., 2013, 52, 10250–10252.
A typical reaction of dimethylcuprate is alkylation of a,b-
unsaturated ketones, such as 3-methyl-cyclo-2-hexen-1-one, which
reacts with Gilman’s reagent within 12 hours in almost quantitative
yield.4 In contrast, 2 shows only 50% conversion to give 3-dimethyl-
cyclohexanone at room temperature as well as at À30 1C within
8 hours, partially due to decomposition. The degree of association
between [CuMe2]À and its counterion was shown to be very
important for the reactivity,1c,5 and that the alkylation reaction
of 4-methyl-cyclo-2-hexen-1-one stops upon adding 15-crown-5.22
The formation of a p-complex between, e.g., Me2CuLi, either as a
monomer or as a contact ion pair, and the substrate is a crucial
step, involving simultaneous coordination of Li+ to the enone
carbonyl oxygen and the cuprate.6c,23 In addition, theoretical
studies suggest that bending of linear [CuMe2]À by a coordination
partner is crucial for weakening the Cu–Me bond and would
therefore increase the reactivity.24 The lower activity of 2 compared
to Gilman’s reagent in the methylation of enones can thus be
explained with a much weaker interaction in solution between
dimethylcuprate and [Cu(PPh3)2]+ than with Li+, which is due to
the higher steric demand for the copper phosphine complex
and its higher stability in solution as an isolated cation.
In conclusion, we have isolated and structurally characterized
the first dicopper(I) complex, [Cu(PPh3)2(m-Me)CuMe] (2), in which
two metal centres are solely bridged by a methyl group and
experience stabilizing metallophilic interactions. Apart from 2,
only one Pt–Cu complex as an example of transition metal {M(m-
Me)M} compounds without further bridging ligands exists.14
Complex 2 is obtained as a result of phosphine ligand redistribution
and represents a transmetalation intermediate on the way from
[CuMe(PPh3)2] (1) to [Cu(PPh3)2]+[CuMe2]À (5), which we observed in
solution. Thus, we were able to show a new bonding mode of CH3
and provide structural evidence for previously proposed solution
equilibria, giving further insight into transmetalation reactions
of organocopper compounds.
13 P. Hofmann, I. V. Shishkov and F. Rominger, Inorg. Chem., 2008, 47,
11755–11762.
14 M.-E. Moret, D. Serra, A. Bach and P. Chen, Angew. Chem., Int. Ed.,
2010, 49, 2873–2877.
¨
15 (a) W. Kaschube, K. R. Porschke, K. Angermund, C. Kru¨ger and
¨
G. Wilke, Chem. Ber./Recl., 1988, 121, 1921–1929; (b) K. R. Porschke,
K. Jonas, G. Wilke, R. Benn, R. Mynott, R. Goddard and C. Kru¨ger,
Chem. Ber./Recl., 1985, 118, 275–297.
16 P. M. Polestshuk, P. I. Dem’yanov and V. S. Petrosyan, Russ. J. Phys.
Chem., 2009, 83, 1913–1923.
17 T. A. Mobley, F. Mu
¨ller and S. Berger, J. Am. Chem. Soc., 1998, 120,
1333–1334.
18 (a) M. H. Perez-Temprano, J. A. Casares and P. Espinet, Chem. – Eur.
J., 2012, 18, 1864–1884; (b) J. del Pozo, D. Carrasco, M. H. Perez-
Temprano, M. Garcia-Melchor, R. Alvarez, J. A. Casares and P. Espinet,
Angew. Chem., Int. Ed., 2013, 52, 2189–2193; (c) D. Carrasco, M. H. Perez-
Temprano, J. A. Casares and P. Espinet, Organometallics, 2014, 33,
3540–3545.
19 J. del Pozo, E. Gioria, J. A. Casares, R. Alvarez and P. Espinet,
Organometallics, 2015, 34, 3120–3128.
20 M. H. Larsen, K. N. Houk and A. S. K. Hashmi, J. Am. Chem. Soc.,
2015, 137, 10668–10676.
We thank the Deutsche Forschungsgemeinschaft (DFG, STE
1834/4-1) for funding. A. S. is grateful to Prof. T. B. Marder for
his generous support.
¨
21 (a) P. Pyykko, Chem. Rev., 1997, 97, 597–636; (b) H. Schmidbaur and
A. Schier, Chem. Soc. Rev., 2012, 41, 370–412.
22 C. Ouannes, G. Dressaire and Y. Langlois, Tetrahedron Lett., 1977,
815–818.
23 (a) M. John, C. Auel, C. Behrens, M. Marsch, K. Harms, F. Bosold,
R. M. Gschwind, P. R. Rajamohanan and G. Boche, Chem. – Eur. J.,
2000, 6, 3060–3068; (b) S. H. Bertz, C. M. Carlin, D. A. Deadwyler,
M. D. Murphy, C. A. Ogle and P. H. Seagle, J. Am. Chem. Soc., 2002,
124, 13650–13651.
Notes and references
1 (a) Z. Rappoport and I. Marek, The Chemistry of Organocopper Compounds,
Wiley, Chichester, Hoboken, NJ, 2009; (b) N. Krause, Modern Organocopper
Chemistry, Wiley-VCH, Weinheim, 2002; (c) N. Yoshikai and E. Nakamura,
Chem. Rev., 2012, 112, 2339–2372; (d) C. Piazza and P. Knochel, 24 S. Mori and E. Nakamura, Tetrahedron Lett., 1999, 40, 5319–5322.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016