Journal of the American Chemical Society
Communication
(8) (a) Manea, F.; Houillon, F. B.; Pasquato, L.; Scrimin, P. Angew.
Chem., Int. Ed. 2004, 43, 6165−6169. (b) Bonomi, R.; Selvestrel, F.;
Lombardo, V.; Sissi, C.; Polizzi, S.; Mancin, F.; Tonellato, U.; Scrimin,
P. J. Am. Chem. Soc. 2008, 130, 15744−15745. (c) Bonomi, R.;
Scrimin, P.; Mancin, F. Org. Biomol. Chem. 2010, 8, 2622−2626.
(d) Zaupa, G.; Mora, C.; Bonomi, R.; Prins, L. J.; Scrimin, P. Chem.
Eur. J. 2011, 17, 4879−4889.
but also to modify the local medium in order to tune the
reactivity. In this way, nanoparticles offer the possibility to
create artificial “binding sites”, something long sought in
micellar catalysis24 and rarely found because of the very fast
monomer exchange occurring in such aggregates. An analogous
medium effect has been also observed with synzymes, metal-
based HPNP-cleaving polymers, but with far lower efficiency
due probably to the lack of cooperativity between metal ions
shown by these systems.25 The fact that the rate accelerations
here observed in water, although very high, are lower than
those reported by Brown while working in nonaqueous
solvents7 indicates that there is still room for improvement of
nanozymes reactivity.
(9) Zaramella, D.; Scrimin, P.; Prins, L. J. J. Am. Chem. Soc. 2012,
134, 8396−8399.
(10) Manea, F.; Bindoli, C.; Polizzi, S.; Lay, L.; Scrimin, P. Langmuir
2008, 24, 4120−4124.
(11) For an interesting related approach, see: (a) Breslow, R.;
Groves, K.; Maye, M. U. Org. Lett. 1999, 1, 117−120. (b) Breslow, R.;
Groves, K.; Mayer, M. U. J. Am. Chem. Soc. 2002, 124, 3622−3635.
(12) Such a limited temperature interval is the result of a
compromise between a reasonable rate of the reaction and the
stability of the nanoparticle.
ASSOCIATED CONTENT
* Supporting Information
■
S
(13) Ferris, D. C.; Drago, R. S. J. Am. Chem. Soc. 1994, 116, 7509−
7514.
Synthesis, characterization of 1−4 and AuNp1−4, and
additional kinetic experiments. This material is available free
(14) This is required to remove the contribution to the
decarboxylation rate by unbound NBIC. As shown in the Supporting
Information, as the concentration of NBIC increases its decarbox-
ylation rate converges to that observed in buffered water.
(15) (a) Iranzo, O.; Kovalevsky, A. Y.; Morrow, J. R.; Richard, J. P. J.
Am. Chem. Soc. 2003, 125, 1988−1993. See also: (b) Morrow, J. R.;
Amyes, T. L.; Richard, J. P. Acc. Chem. Res. 2008, 41, 539−548.
(16) Zaupa, G.; Scrimin, P.; Prins, L. J. J. Am. Chem. Soc. 2008, 130,
5699−5709.
(17) Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg. Chem.
2009, 48, 11425−11433.
(18) Maxwell, C. I.; Mosey, N. J.; Brown, R. S. J. Am. Chem. Soc.
2013, 135, 17209−17222.
(19) Feng, G. Q.; Natale, D.; Prabaharan, R.; Mareque-Rivas, J. C.;
Williams, N. H. Angew. Chem., Int. Ed. 2006, 45, 7056−7059.
(20) This consideration is unbiased even by keeping into
consideration the negative effect of the alkoxy bridge. Second order
rate constant for HPNP cleavage by the di-Zn(II) complex of 2-
propoxy analogue of 7 in CH3OH at 25 °C is 7.6 M−1 s−1; see ref 17.
(21) But for small effects due to mobility changes of the monolayer.
(22) We have unsuccessfully tried to carry out the reaction with
AuNp2 in methanol for comparison. Regrettably, upon addition of the
substrate, substantial precipitation occurs, rendering the experiment
unfeasible.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funded by the EU-FP7 Marie Curie-ITN Project PhosChem-
Rec (M.D.C. and P.S., Grant 238679) and by the ERC Starting
Grants Project MOSAIC (F.M., Grant 259014). The authors
̀
thank Prof. Raimondo Germani (Universita di Perugia) for a
generous gift of NBIC. M.D.C. thanks the PhosChemRec
Project for a fellowship.
REFERENCES
■
(1) Selected reviews (a) Mancin, F.; Scrimin, P.; Tecilla, P. Chem.
Commun. 2012, 48, 5545−5559. (b) Aiba, Y.; Sumaoka, J.; Komiyama,
M. Chem. Soc. Rev. 2011, 40, 5657−5668. (c) Lonnberg, H. Org.
Biomol. Chem. 2011, 9, 1687−1703.
(2) (a) Dupureur, C. M. Metallomics 2010, 2, 609−620. (b) Cowan,
J. A. Chem. Rev. 1998, 98, 1067−1087.
(23) It has been suggested that the decrease of the polarity of the
monolayer caused by the substrate may also affect the reaction
pathway. See: Pengo, P.; Baltzer, L.; Pasquato, L.; Scrimin, P. Angew.
Chem., Int. Ed. 2007, 46, 400−404.
(3) (a) Jarvinen, P.; Oivanen, M.; Lonnberg, H. J. Org. Chem. 1991,
56, 5396−5401. (b) Schroeder, G. K.; Lad, C.; Wyman, P.; Williams,
N. H.; Wolfenden, R. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4052−
4055.
(24) Mancin, F.; Scrimin, P.; Tecilla, P.; Tonellato, U. Coord. Chem.
Rev. 2009, 253, 2150−2165.
(25) Avenier, F.; Hollfelder, F. Chem.Eur. J. 2009, 15, 12371−
(4) Korhonen, H.; Mikkola, S.; Williams, N. H. Chem.Eur. J. 2012,
12380.
18, 659−670.
(5) Morrow, J. R. Comments Inorg. Chem. 2008, 29, 169−188.
(6) (a) Cleland, W. W.; Frey, P. A.; Gerlt, J. A. J. Biol. Chem. 1998,
273, 25529−25532. (b) Czerwinski, R. M.; Harris, T. K.; Massiah, M.
A.; Mildvan, A. S.; Whitman, C. P. Biochemistry 2001, 40, 1984−1995.
(c) Cachau, R. E.; Garcia-Moreno, E. B. J. Mol. Biol. 1996, 255, 340−
343.
(7) (a) Mohamed, M. F.; Sanchez-Lombardo, I.; Neverov, A. A.;
Brown, R. S. Org. Biomol. Chem. 2013, 10, 631−639. (b) Brown, R. S.;
Lu, Z. L.; Liu, C. T.; Tsang, W. Y.; Edwards, D. R.; Neverov, A. A. J.
Phys. Org. Chem. 2010, 23, 1−15. (c) Neverov, A. A.; Liu, C. T.; Bunn,
S. E.; Edwards, D.; White, C. J.; Melnychuk, S. A.; Brown, R. S. J. Am.
Chem. Soc. 2008, 130, 6639−6649. (d) Liu, C. T.; Neverov, A. A.;
Brown, R. S. J. Am. Chem. Soc. 2008, 130, 13870−13872. (e) Liu, C.
T.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2008, 130, 16711−
16720. (f) Bunn, S. E.; Liu, C. T.; Lu, Z.-L.; Neverov, A. A.; Brown, R.
S. J. Am. Chem. Soc. 2007, 129, 16238−16248. (g) Neverov, A. A.; Lu,
Z.-L.; Maxwell, C. I.; Mohamed, M. F.; White, C. J.; Tsang, J. S. W.;
Brown, R. S. J. Am. Chem. Soc. 2006, 128, 16398−16405.
1161
dx.doi.org/10.1021/ja411969e | J. Am. Chem. Soc. 2014, 136, 1158−1161