Communication
ChemComm
7 (a) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029; (b) G. Shang,
Q. Yang and X. M. Zhang, Angew. Chem., Int. Ed., 2006, 45, 6360.
8 (a) S. Kobayashi, Y. Mori, J. S. Fossey and M. M. Salter, Chem. Rev.,
2011, 111, 2626; (b) A. E. Taggi, A. M. Hafez and T. Lectka, Acc. Chem.
Res., 2003, 36, 10; (c) A. Cordova, Acc. Chem. Res., 2004, 37, 102;
(d) B. M. Trost and L. M. Terrell, J. Am. Chem. Soc., 2003, 125, 338;
(e) C. Y. Zhou, S. F. Zhu, L. X. Wang and Q. L. Zhou, J. Am. Chem.
Soc., 2010, 132, 10955; ( f ) K. R. Knudsen, T. Risgaard, N. Nishiwaki,
K. V. Gothelf and K. A. Jørgensen, J. Am. Chem. Soc., 2001, 123, 5843;
(g) S. Kobayashi, T. Hamada and K. Manabe, J. Am. Chem. Soc., 2002,
124, 5640; (h) J. Y. Chen, X. X. Lu, W. Y. Lou, Y. Ye, H. F. Jiang and
W. Zeng, J. Org. Chem., 2012, 77, 8541; (i) C. Qian, J. Y. Chen,
M. Q. Fu, S. Y. Zhu, W.-H. Chen, H. F. Jiang and W. Zeng, Org. Biomol.
Chem., 2013, 11, 6013; ( j) C. M. Wei and C.-J. Li, J. Am. Chem. Soc.,
2002, 124, 5638; (k) C. Koradin, K. Polborn and P. Knochel, Angew.
Chem., Int. Ed., 2002, 41, 2535; (l) N. Gommermann, C. Koradin,
K. Polborn and P. Knochel, Angew. Chem., Int. Ed., 2003, 42, 5763;
(m) C. M. Wei, J. T. Mague and C.-J. Li, Proc. Natl. Acad. Sci. U. S. A.,
2004, 101, 5749; (n) M. Hatano, T. Horibe and K. Ishihara, J. Am.
Chem. Soc., 2010, 132, 56.
9 (a) K. Maruoka and T. Ooi, Chem. Rev., 2003, 103, 3013;
(b) M. J. O’Donnell, Acc. Chem. Res., 2004, 37, 506; (c) B. Lygo and
B. I. Andrews, Acc. Chem. Res., 2004, 37, 518; (d) T. Hashimoto and
K. Maruoka, Chem. Rev., 2007, 107, 5656; (e) T. Ooi and K. Maruoka,
Angew. Chem., Int. Ed., 2007, 46, 4222; ( f ) K. Maruoka and
S. Shirakawa, Angew. Chem., Int. Ed., 2013, 52, 4312.
10 (a) J.-Q. YuZ.-J. ShiC–H Activation, Springer-Verlag, Berlin, Heidelberg,
2010; (b) K. Godula and D. Sames, Science, 2006, 312, 67; (c) X. Chen,
K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2009,
48, 5094; (d) M. Bandini and A. Eichholzer, Angew. Chem., Int. Ed.,
2009, 48, 9608; (e) R. Vicente and A. R. Kapdi, Angew. Chem., Int. Ed.,
On the basis of the observed experimental results and
pioneering reports,15 we propose a plausible mechanistic pathway
outlined in Scheme 3. Pd(OAc)2 first coordinates with the ligand of
(4S,40S)-4,40-diisopropyl-2,20-bis(2-oxazoline) to form the activated
chiral palladium catalyst 1A, which reacts with aryl boric acid by
transmetallation to produce the arylpalladium intermediate 1B.
This active species subsequently attacks the a-imino ester, which
was produced by the oxidation of the N-aryl glycine ester, because
of the coordination mode of the nitrogen atom of the imine to the
palladium center, the aryl group preferred to add to imines from
the rear face in a highly selective manner to afford the added
product 1D, which then yielded the product of (S)-2a upon disso-
ciation, and the active palladium catalyst was regenerated and
entered the next catalytic cycle synchronously.
In conclusion, we have developed a novel pattern for the
synthesis of a series of chiral a-amino acid derivatives by
palladium-catalyzed enantioselective direct C–H oxidation and
arylation reaction. This method also holds significant promise
for a potential pathway of enantioselective Csp3–C bond
formation by direct C–H oxidative cross-coupling.
We are grateful to the NSFC (No. 21272100), FRFCU (lzujbky-
2013-ct02), PCSIRT (IRT1138), and Program for New Century
Excellent Talents in University (NCET-11-0215 and lzujbky-
2013-k07) for financial support.
¨
2009, 48, 9792; ( f ) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius,
Chem. Soc. Rev., 2011, 40, 4740; (g) S. H. Cho, J. Y. Kim, J. Kwak and
S. Chang, Chem. Soc. Rev., 2011, 40, 5068; (h) J. Yamaguchi,
A. D. Yamaguchi and K. Itami, Angew. Chem., Int. Ed., 2012, 51, 8960;
(i) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord and F. Glorius, Angew.
Chem., Int. Ed., 2012, 51, 10236; ( j) I. A. I. Mkhalid, J. H. Barnard,
T. B. Marder, J. M. Murphy and J. F. Hartwig, Chem. Rev., 2010, 110, 890;
(k) C.-L. Sun, B.-J. Li and Z.-J. Shi, Chem. Commun., 2010, 46, 677.
11 (a) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215;
(b) J. Bras and L. J. Muzart, Chem. Rev., 2011, 111, 1170; (c) C.-J.
Li, Acc. Chem. Res., 2009, 42, 335; (d) C. J. Scheuermann, Chem. –
Asian J., 2010, 5, 436; (e) S. A. Girard, T. Knauber and C.-J. Li, Angew.
Chem., Int. Ed., 2014, 53, 74.
12 (a) Z. Li and C.-J. Li, Org. Lett., 2004, 6, 4997; (b) F. Benfatti,
M. G. Capdevila, L. Zoli, E. Benedetto and P. G. Cozzi, Chem.
Commun., 2009, 5919; (c) C. Guo, J. Song, S. W. Luo and L. Z. Gong,
Angew. Chem., Int. Ed., 2010, 49, 5558; (d) B. Zhang, S. K. Xiang,
L. H. Zhang, Y. Cui and N. Jiao, Org. Lett., 2011, 13, 5212; (e) J. Zhang,
B. Tiwari, C. Xing, X. Chen and Y. R. Chi, Angew. Chem., Int. Ed., 2012,
51, 3649; ( f ) G. Zhang, Y. X. Ma, S. L. Wang, Y. H. Zhang and
R. Wang, J. Am. Chem. Soc., 2012, 134, 12334; (g) G. Zhang, Y. Ma,
S. Wang, W. Kong and R. Wang, Chem. Sci., 2013, 4, 2645;
(h) A. J. J. Neel, P. Hehn, P. F. Tripet and F. D. Toste, J. Am. Chem.
Soc., 2013, 135, 14044; (i) Z. L. Meng, S. T. Sun, H. Q. Yuan, H. X. Lou
and L. Liu, Angew. Chem., Int. Ed., 2014, 53, 543.
Notes and references
1 (a) S. Hunt, in Chemistry and Biochemistry of the Amino Acids, ed. G. C.
Barrett, Chapman and Hall, London, 1985, p. 55; (b) R. M. Williams and
C. M. Burnett, New Tricks in Amino Acid Synthsis: Applications to Complex
Natural Products, ACS, Washington, DC, 2009, p. 420; (c) R. M. Williams
and J. A. Hendrix, Chem. Rev., 1992, 92, 889; (d) Amino Acids, Peptides and
Proteins in Organic Chemistry, ed. B. H. Andrew, Wiley-VCH, Weinheim,
Germany, 2011.
2 (a) J. Seyden-Penne, Chiral Auxiliaries and Ligands in Asymmetric
Synthesis, Wiley, New York, 1995; (b) Amino Acids, Peptides and
Proteins in Organic Chemistry. Vol. 3-Building Blocks, Catalysis and
Coupling Chemistry, ed. B. H. Andrew, Wiley-VCH, Weinheim,
Germany, 2011.
3 (a) Synthesis of Optically Active Amino Acids, ed. R. M. Williams, Pergamon
Press, Oxford, 1989; (b) E. W. Werner, T.-S. Mei, A. J. Burckle and
M. S. Sigman, Science, 2012, 338, 1455; (c) J. T. Binder, C. J. Cordier and
G. C. Fu, J. Am. Chem. Soc., 2012, 134, 17003; (d) S. Kotha, Acc. Chem. Res.,
2003, 36, 342; (e) C. Najera and J. M. Sansano, Chem. Rev., 2007,
107, 4584; ( f ) S. Saito, T. Tsubogo and S. Kobayashi, J. Am. Chem.
Soc., 2007, 129, 5364; (g) J. S. Bandar and T. H. Lambert, J. Am. Chem.
Soc., 2013, 135, 11799; (h) B. M. Trost and F. Miege, J. Am. Chem. Soc.,
2014, 136, 3016; (i) Z.-Y. Xue, Q.-H. Li, H.-Y. Tao and C.-J. Wang, J. Am.
Chem. Soc., 2011, 133, 11757.
4 (a) H. Groger, Chem. Rev., 2003, 103, 2795; (b) C. Spino, Angew.
Chem., Int. Ed., 2004, 43, 1764.
5 (a) J. Xie and Q. Zhou, Acc. Chem. Res., 2008, 41, 581; (b) H. M. L. Davies
and R. E. J. Beckwith, Chem. Rev., 2003, 103, 2861; (c) H. M. L. Davies and
J. R. Manning, Nature, 2008, 451, 417; (d) P. Miller and C. Fruit,
Chem. Rev., 2003, 103, 2905; (e) B. Liu, S.-F. Zhu, W. Zhang, C. Chen
and Q.-L. Zhou, J. Am. Chem. Soc., 2007, 129, 5834.
6 (a) M. J. Burk, J. E. Feaster, W. A. Nugent and R. L. Harlow, J. Am.
Chem. Soc., 1993, 115, 10125; (b) M. J. Burk, M. F. Gross and
J. P. Martinez, J. Am. Chem. Soc., 1995, 117, 9375.
13 G. Zhang, Y. H. Zhang and R. Wang, Angew. Chem., Int. Ed., 2011,
50, 10429.
14 (a) S.-Y. Zhang, Q. Li, G. He, W. A. Nack and G. Chen, J. Am. Chem.
Soc., 2013, 135, 12135; (b) Q. Zhang, K. Chen, W. Rao, Y. Zhang,
F.-J. Chen and B.-F. Shi, Angew. Chem., Int. Ed., 2013, 52, 13588;
(c) K. Chen, F. Hu, S.-Q. Zhang and B.-F. Shi, Chem. Sci., 2013,
4, 3906; (d) J. He, S. H. Li, Y. Q. Deng, H. Y. Fu, B. N. Laforteza,
J. E. Spangler, A. Homs and J.-Q. Yu, Science, 2014, 343, 1216.
15 (a) R. Bloch, Chem. Rev., 1998, 98, 1407; (b) S. Kobayashi and
H. Ishitani, Chem. Rev., 1999, 99, 1069; (c) H. Dai and X. Lu, Org.
Lett., 2007, 9, 3077.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014