Organometallics
Article
V.; Getausis, V.; Jancauskas, V. Carbazole-based bis(enamines) as
effective charge-transporting amorphous molecular materials. Synth.
Met. 2008, 158, 993−998. (f) Paspirgelyte, R.; Zostautiene, R.; Buika,
G.; Grazulevicius, J. V.; Grigalevicius, S.; Jankauskas, V.; Chen, C.-C.;
Wang, W.-B.; Jou, J. H. Indole and phenylenediamine based enamines
as amorphous hole-transporting materials. Synth. Met. 2010, 160,
162−168.
(11) (a) Greene, J.; Curtis, M. D. Catalysis of siloxane metathesis by
cyclometalladisiloxanes. Mechanistic similarities to olefin metathesis
catalysis. J. Am. Chem. Soc. 1977, 99, 5176−5177. (b) Curtis, M. D.;
Greene, J. Small Ring Metallocycles. 4. Synthesis and Chemical
Reactivity of cyclo-Metalladisiloxanes, MSiR2OSiR2, and cyclo-Metal-
ladisilabutanes, MSiR2CH2SiR2. J. Am. Chem. Soc. 1978, 100, 6362−
6367.
(12) (a) Geoffroy, G. L.; Wrighton, M. S. Organometallic
Photochemistry; Academic Press: 1979. (b) Wink, D. A.; Ford, P. C.
Common intermediates in the flash photolysis of Vaska’s compound
IrCl(CO)(PPh3)2 and its dihydride adduct H2IrCl(CO)(PPh3)2.
Implications with regard to reductive elimination mechanisms. J. Am.
Chem. Soc. 1985, 107, 5566−5567. (c) Wink, D. A.; Ford, P. C.
Reaction dynamics of the tricoordinate intermediates MCl(PPh3)2 (M
= Rh or Ir) as probed by the flash photolysis of the carbonyls
MCl(CO)(PPh3)2. J. Am. Chem. Soc. 1987, 109, 436−442.
(13) Wink and Ford reported the generation of IrCl(PPh3)2 by flush
photolysis of 1a. This 14-electron species is very unstable and reactive.
In the actual catalytic reactions, IrCl(PPh3)2 generated is stabilized by
solvents, amides, or hydrosilanes. In this paper, we describe the
stabilized IrCl(PPh3)2 as “ClIr(PPh3)2”. In a similar fashion,
“HIr(PPh3)2” and “SiIr(PPh3)2” are the species that 14-electron
IrH(PPh3)2 and IrSi(PPh3)2 (Si = −SiMe2OSiMe2H) are stabilized by
solvents, amides, or hydrosilanes.
(14) Bennett, M. A.; Latten, J. L. 35. An Iridium(III) Complex
Containing Cyclometallated Triphenylphosphine formed by Isomer-
ization of an Iridium(I) Triphenylphosphine Complex. Inorg. Synth.
2007, 26, 200−203.
(15) Wilkinson, G. 25. Carbonyl Hydrido Tris(triphenylphosphine)
Iridium (I). Inorg. Synth. 2007, 13, 126−131.
(16) Fernandez, M. J.; Esteruelas, M. A.; Covarrubias, M.; Oro, L. A.
Preparation of IrH(diene)L2 Compounds via Methoxyiridium
Complexes: Catalysts for Hydrogen Transfer Reactions. J. Organomet.
Chem. 1986, 316, 343−349.
(17) Crabtree, R. H.; Felkin, H.; Morris, G. E. Cationic Iridium
Diolefin Complexes as Alkene Hydrogenation Catalysts and the
Isolation of Some Related Hydrido Complexes. J. Organomet. Chem.
1977, 141, 205−215.
Commun. 1973, 629−630. (b) Duckett, S. B.; Newell, C. L.;
Eisenberg, R. Observation of New Intermediates in Hydrogenation
Catalyzed by Wilkinson’s Catalyst, RhCl(PPh3)3, Using Para-
hydrogen-induced Polarization. J. Am. Chem. Soc. 1994, 116,
10548−10556. (c) Goodman, J.; Grushin, V. V.; Larichev, R. B.;
Macgregor, S. A.; Marshall, W. J.; Roe, D. C. Fluxionality of
[(Ph3P)3M(X)] (M = Rh, Ir). The Red and Orange Forms of
[(Ph3P)3Ir(Cl)]. Which Phosphine Dissociates Faster from Wilkin-
son’s Catalyst? J. Am. Chem. Soc. 2010, 132, 12013−12026.
(24) Sunada, Y.; Fujimura, Y.; Nagashima, H. Synergistic Effects of
Two Si-H Groups and a Metal Center” in Transition Metal-Catalyzed
Hydrosilylation of Unsaturated Molecules: A Mechanistic Study of
the RhCl(PPh3)3-Catalyzed Hydrosilylation of Ketones with 1,2-
Bis(dimethylsilyl)benzene. Organometallics 2008, 27, 3502−3513.
(25) (a) Chalk, A. J.; Harrod, J. F. Homogeneous Catalysis. II. The
Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII
Metal Complexes. J. Am. Chem. Soc. 1965, 87, 16−21. (b) Sakaki, S.;
Mizoe, N.; Sugimoto, M.; Musashi, Y. Pt-catalyzed hydrosilylation of
ethylene. A theoretical study of the reaction mechanism. Coord. Chem.
Rev. 1999, 190−192, 933−960.
(26) (a) Ojima, I.; Nihonyanagi, M.; Nagai, Y. Rhodium complex
catalysed hydrosilylation of carbonyl compounds. J. Chem. Soc., Chem.
Commun. 1972, 938a−938a. (b) Ojima, I.; Nihonyanagi, M.; Kogure,
T.; Kumagai, M.; Horiuchi, S.; Nakatsugawa, K.; Nagai, Y. Reduction
of carbonyl compounds via hydrosilylation: I. Hydrosilylation of
carbonyl compounds catalyzed by tris(triphenylphosphine)-
chlororhodium. J. Organomet. Chem. 1975, 94, 449−461. (c) Sakaki,
S.; Sugimoto, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.;
Matsuzaki, S. Why Does the Rhodium-Catalyzed Hydrosilylation of
Alkenes Take Place through a Modified Chalk-Harrod Mechanism? A
Theoretical Study. Organometallics 2002, 21, 3788−3802. (d) Sakaki,
S.; Sugimoto, M. A Theoretical Study on the Oxidative Addition of a
Si-H σ-Bond to [MCl(CO)(PH3)2] (M = Rh or Ir). Similarities to
and Differences from [M′(PH3)2] (M′ = Pd or Pt) and [RhCl-
(PH3)2]. Bull. Chem. Soc. Jpn. 1996, 69, 3047−3057.
(27) (a) Chalk, A. J.; Harrod, J. F. Dicobalt Octacarbonyl as a
Catalyst for Hydrosilylation of Olefins. J. Am. Chem. Soc. 1965, 87,
1133−1133. (b) Chalk, A. J.; Harrod, J. F. Reactions between
Dicobalt Octacarbonyl and Silicon Hydrides. J. Am. Chem. Soc. 1965,
87, 1133−1135. (c) Chalk, A. J.; Harrod, J. F. Homogeneous
Catalysis. IV. Some Reactions of Silicon Hydrides in the Presence of
Cobalt Carbonyls. J. Am. Chem. Soc. 1967, 89, 1640−1647.
(28) (a) Reichel, C. L.; Wrighton, M. S. Photochemistry of Cobalt
Carbonyl Complexes having a Cobalt-silicon Bond and its Importance
in Activation of Catalysis. Inorg. Chem. 1980, 19, 3858−3860.
(b) Mitchener, J. C.; Wrighton, M. S. Photogeneration of Very Active
Homogeneous Catalysts using Laser Light Excitation of Iron
Carbonyl Precursors. J. Am. Chem. Soc. 1981, 103, 975−977.
(29) In the original report by Chalk and Harrod, insertion of alkenes
into a H−CoI bond of HCo(CO)n was proposed as a plausible
mechanism.27 In contrast, that into the Si-Co(I) species of Si-
Co(CO)n was discussed as an alternative by Wrighton and co-
workers.28 Oxidative addition of a H−Si bond to the resulting ethyl or
silylethyl Co(I) species induces the reductive elimination of the
hydrosilylated product.27,28 Similar mechanisms, namely those
involving insertion of a CO of the amide into either “H-IrI(PPh3)2”
or “Si-Ir(I)(PPh3)2”, should be investigated in further mechanistic
considerations using DFT calculations.
(30) Nagashima, H.; Tatebe, K.; Ishibashi, I.; Nakaoka, A.;
Sakakibara, J.; Itoh, K. Unusual Rate Enhancement in the RhCl-
(PPh3)3-Catalyzed Hydrosilylation by Organosilanes Having Two Si-
H Groups at Appropriate Distances: Mechanistic Aspects. Organo-
metallics 1995, 14, 2868−2879.
(31) Nakatani, N.; Hasegawa, J.; Sunada, Y.; Nagashima, H.
Platinum-catalyzed reduction of amides with hydrosilanes bearing
dual Si−H groups: a theoretical study of the reaction mechanism.
Dalton Trans. 2015, 44, 19344−19356.
(32) When 1a was used as the catalyst, dissociation of CO generated
catalytically active species. In the catalytic reaction, the active species
(18) (a) Casey, C. P.; Rutter, E. W., Jr. Hydrogen Transfer from
CpRe(CO)2H2 to trans-Ir(CO)(Cl)(PPh3)2 via a Heterobimetallic
Re-Ir Intermediate. Inorg. Chem. 1990, 29, 2333−2335. (b) Park, S.;
Lough, A. J.; Morris, R. H. Iridium(III) Complex Containing a
Unique Bifurcated Hydrogen Bond Interaction Involving Ir-H···
H(N)···F-B atoms. Crystal and Molecular Structure of [IrH(η1-
SC5H4NH)(η2-SC5H4N)(PPh3)2](BF4)·0.5C6H6. Inorg. Chem. 1996,
35, 3001−3006.
(19) Loza, M.; Faller, J. W.; Crabtree, R. H. Seven-Coordinate
Iridium(V) Polyhydrides with Chelating Bis(silyl) Ligands. Inorg.
Chem. 1995, 34, 2937−2941.
(20) (a) Osborn, J. A.; Wilkinson, G. 17. Chloro Tris
(Triphenylphosphine) Rhodium (I) (Wilkinson’s Catalyst). Inorg,
Synth. 2007, 28, 77−79. (b) Corriu, R. J. P.; Moreau, J. J. E.; Pataud-
Sat, M. Rhodium complex-catalyzed reactions of o-bis(dimethylsilyl)-
benzene with nitriles. J. Organomet. Chem. 1982, 228, 301−308.
(21) Evans, D.; Osborn, J. A.; Wilkinson, G. 18. trans-Carbonyl
Chloro Bis(Triphenylphosphine) Rhodium and Related Complexes.
Inorg, Synth. 2007, 28, 79−80.
(22) Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F. 19.
Hydrido Phosphine Complexes of Rhodium(I). Inorg, Synth. 2007,
28, 81−82.
(23) (a) Halpern, J.; Wong, C. S. Hydrogenation of tris-
(triphenylphosphine)chlororhodium (I). J. Chem. Soc., Chem.
J
Organometallics XXXX, XXX, XXX−XXX