Paper
RSC Advances
(
15 mg) was added, the mixture was stirred at room temper-
Acknowledgements
ature for appropriate time, the reaction was monitored by
TLC. Aer completion of the reaction, acetone was added and We acknowledge Tarbiat Modares University for partial support
catalyst was removed by centrifugation, product was recrys- of this work.
tallized from EtOH. The catalyst was used in the next run
under the same conditions as for the initial run of the
catalyst. The purity of these products was ascertained by their
Notes and references
melting points and spectral data with those reported in the
literatures.
1 B. List, J. Am. Chem. Soc., 2000, 122, 9336–9337.
2 R. O. Duthaler, Angew. Chem., Int. Ed., 2003, 42, 975–978.
3
4
A. Dandia, K. Arya, S. Khaturia and P. Yadav, ARKIVOC, 2005,
3, 80–88.
1
Spectral data for some selected b-amino ketones
¨
A. Domling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39, 3168–
210.
3
3
-(3-Bromophenyl)-1-phenyl-3-(phenylamino)propan-1-one
ꢂ
5 C. Mannich and W. Kr ¨o sche, Arch. Pharm., 1912, 250, 647–
(
4d). Mp 106–110 C; IR (KBr): nmax ¼ 3392, 1667, 1596, 1509,
ꢁ
1
1
667.
1
2
7
7
7
3
287 cm ; H NMR (CDCl , 500 MHz) d ppm: 3.44–3.54 (m,
6
7
M. Suginome, L. Uehlin and M. Murakami, J. Am. Chem. Soc.,
004, 126, 13196–13197.
H), 4.97 (t, J ¼ 7.0 Hz, 1H), 6.59 (d, J ¼ 8.0 Hz, 2H), 6.72 (t, J ¼
.5 Hz, 1H), 7.10–7.13 (t, J ¼ 7.5 Hz, 2H), 7.17–7.21 (m, 1H),
.36–7.41 (m, 2H), 7.44–7.47 (t, J ¼ 8 Hz, 2H), 7.55–7.61 (m, 2H),
.9 (d, J ¼ 7.5 Hz, 2H).
2
W. Notz, F. Tanaka, S. Watanabe, N. S. Chowdari,
J. M. Turner, R. Thayumanavan and C. F. Barbas, J. Org.
Chem., 2003, 68, 9624–9634.
1,3-Diphenyl-3(p-tolylamino)propan-1-one (4g). Mp 168–
ꢂ
ꢁ1
1
8 R. M u¨ ller, H. Goesmann and H. Waldmann, Angew. Chem.,
Int. Ed., 1999, 38, 184–187.
1
70 C; IR (KBr): n
¼ 3398, 1677, 1617, 1523, 1291 cm ; H
max
NMR (CDCl
3
, 500 MHz) d ppm: 2.19 (s, 3H, CH
H), 4.98 (t, J ¼ 6.5 Hz, 1H), 6.60 (m, 2H), 6.92 (d, J ¼ 8.0 Hz, 2H),
.19–7.23 (m, 1H), 7.29–7.32 (m, 2H), 7.41–7.58 (m, 5H), 7.9 (d,
3
), 3.48–3.53 (m,
9
S. Abele and D. Seebach, Eur. J. Org. Chem., 2000, 2000, 1–15.
0 E. Hagiwara, A. Fujii and M. Sodeoka, J. Am. Chem. Soc.,
998, 120, 2474–2475.
2
7
1
1
1
1
1
1
1
J ¼ 8.5 Hz, 2H).
1 D. Seebach and J. L. Matthews, Chem. Commun., 1997, 2015–
2022.
2 W. J. Drury, D. Ferraris, C. Cox, B. Young and T. Lectka, J. Am.
Chem. Soc., 1998, 120, 11006–11007.
3 E. J. Corey and G. A. Reichard, Tetrahedron Lett., 1989, 30,
5207–5210.
4 M. L. Kantam, C. V. Rajasekhar, G. Gopikrishna, K. R. Reddy
and B. M. Choudary, Tetrahedron Lett., 2006, 47, 5965–5967.
5 A. Sasaoka, M. I. Uddin, A. Shimomoto, Y. Ichikawa, M. Shiro
and H. Kotsuki, Tetrahedron: Asymmetry, 2006, 17, 2963–
3
-(4-Bromophenylamino)-1,3-diphenylpropan-1-one (4i). Mp
ꢂ
ꢁ1
1
75–177 C; IR (KBr): n
H NMR (CDCl , 500 MHz) d ppm: 3.42–3.53 (m, 2H), 4.95 (t,
¼ 3370, 1664, 1594, 1494, 1282 cm
;
max
1
3
1
H), 6.46 (d, J ¼ 9.0 Hz, 2H), 7.16 (d, J ¼ 8.5 Hz, 2H), 7.24 (m,
1H), 7.29–7.34 (t, J ¼ 7.5 Hz, 2H), 7.41–7.62 (m, 5H), 7.9 (d, J ¼ 8
1
3
3
Hz, 2H). C NMR (100 MHz, CDCl ) d: 45.97, 55.21, 110.08,
1
1
15.85, 126.38, 127.59, 128.18, 128.72, 128.91, 131.82, 133.54,
36.57, 142.04, 145.48, 198.05.
-(Phenyl(phenylamino)methyl)cyclohexanone (6a). Mp 139
2
ꢂ
ꢁ1
1
C; IR (KBr): nmax ¼ 3327, 1701, 1599, 1495, 1271 cm ; H NMR
2
969.
6 L. Gang, L. Ruiling and Y. Jiangli, Kinet. Catal., 2011, 52, 397–
00.
7 K. Manabe, Y. Mori and S. Kobayashi, Tetrahedron, 2001, 57,
537–2544.
(CDCl , 500 MHz) d ppm: 1.68–172 (m, 2H), 1.79–2.10 (m, 4H),
3
1
1
2
(
7
.34–2.47 (m, 2H), 2.82–2.97 (m, 1H), 4.58–4.64 (m, 1H), 6.63
m, 2H), 6.70 (m, 1H), 7.07–7.10 (m, 2H), 7.21–7.24 (m, 1H),
.29–7.34 (m, 2H), 7.40 (d, J ¼ 8 Hz, 2H).
-(4-Cholorophenyl)amino(phenyl)methyl cyclohexanone (6c).
4
2
2
ꢂ
ꢁ1
1
18 P. Desai, K. Schildknegt, K. A. Agrios, C. Mossman,
Mp 135–137 C; IR (KBr): nmax ¼ 3379, 1703, 1597, 1497 cm ; H
NMR (DMSO-d , 500 MHz) d ppm: 1.22–1.81 (m, 6H), 2.30–2.32
m, 2H), 2.72–2.73 (m, 1H), 4.68–4.86 (m, 1H), 6.51 (d, 2H), 6.94–
G. L. Milligan and J. Aube, J. Am. Chem. Soc., 2000, 122,
6
7226–7232.
(
1
2
9 K. Manabe and S. Kobayashi, Org. Lett., 1999, 1, 1965–1967.
0 H. Xing, T. Wang, Z. Zhou and Y. Dai, J. Mol. Catal. A: Chem.,
6.98 (m, 2H), 7.14–7.18 (m, 1H), 7.23–7.39 (m, 4H).
2
007, 264, 53–59.
1 F. Dong, F. Zhenghao and L. Zuliang, Catal. Commun., 2009,
0, 1267–1270.
We have developed a facile, efficient and ecofriendly procedure 22 A. A. Jafari, F. Moradgholi and F. Tamaddon, Eur. J. Org.
for the one-pot synthesis of b-amino ketones by a three Chem., 2009, 2009, 1249–1255.
component Mannich reaction under solvent-free conditions, at 23 M. Kidwai, N. K. Mishra, V. Bansal, A. Kumar and
room temperature. The notable advantages of this study are S. Mozumdar, Tetrahedron Lett., 2009, 50, 1355–1358.
high catalytic activity, excellent yields, cleaner reaction prole, 24 R. Wang, B. Li, T. Huang, L. Shi and X. Lu, Tetrahedron Lett.,
low cost, simplicity of product isolation, and mild reaction 2007, 48, 2071–2073.
conditions. These advantages, in general, highlight this 25 D. P. Sawant, J. Justus, V. V Balasubramanian, K. Ariga,
2
Conclusions
1
protocol as a useful and attractive methodology, among the
methods reported in the literature.
P. Srinivasu, S. Velmathi, S. B. Halligudi and A. Vinu,
Chem.–Eur. J., 2008, 14, 3200–3212.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 32183–32188 | 32187