7286
S. Campestrini et al. / Tetrahedron Letters 45 (2004) 7283–7286
proceeds with fair yield and involves only the alcoholic
function. In fact, neither the 2,3-allylic or 6,7-olefinic
carbon–carbon double bonds undergo oxidation. Fur-
furyl alcohol too (run 23) leads to a fair conversion
being the corresponding acid the major product under
these experimental conditions. A more sterically hin-
dered secondary alcohol than 2-octanol, such as borneol
4. Yamaguchi, K.;Mizuno, N. Chem. Eur. J. 2003, 9,
353–4361.
. (a) Steinhoff, B. A.;Stahl, S. S. Org. Lett. 2002, 4, 4179;
b) ten Brink, G. J.;Arends, I. W. C. E.;Sheldon, R. A.
4
5
(
Adv. Synth. Catal. 2002, 344, 355.
6
7
. Betzemeier, B.;Cavazzini, M.;Quici, S.;Knochel, P.
Tetrahedron Lett. 2000, 41, 4343.
. Sharma, V. B.;Jain, S. L.;Sain, B. Tetrahedron Lett. 2003,
(
run 24) gives only moderate substrate conversion with
4
4, 383.
an excellent selectivity for the corresponding ketone. It
should be noted that these reactions have not been
optimised. Higher conversions for high molecular
weight alcohols and higher selectivities for aldehydes
in primary alcohols oxidation should be expected by
tuning opportunely the catalyst hydrophobicity and
the amount of hydrogen peroxide utilised as well as
the velocity of peroxide addition.
8. Maeda, Y.;Kakiuchi, N.;Matsumura, S.;Nishimura, T.;
Kawamura, T.;Uemura, S. J. Org. Chem. 2002, 67, 6718.
9. D o¨ bler, C.;Mehltretter, G. M.;Sundermeier, U.;Eckert,
M.;Militzer, H. C.;Beller, M. Tetrahedron Lett. 2001, 42,
8447.
0. Mark o´ , I. E.;Giles, P. R.;Tsukasaki, M.;Chelle-Regnaut,
I.;Urch, C. J.;Brown, S. M. J. Am. Chem. Soc. 1997, 119,
1
1
2661.
1. Ciriminna, R.;Pagliaro, M. Chem. Eur. J. 2003, 9,
067–5073.
1
1
5
In conclusion, we have discovered that TPAP-doped
organically modified silica gels are effective catalysts
for the oxidation of alcohols by hydrogen peroxide at
room temperature, provided that the oxidant solution
is added slowly. The effect of surface catalyst hydro-
phobicity is opposite of that found in aerobic alcohols
oxidation and is consistent with the polar nature of
the H O primary oxidant. Considering the ease of
2. Hasan, M.;Musawir, M.;Davey, P. N.;Kozhevnikov, I.
V. J. Mol. Catal. A 2002, 180, 77–84.
13. Ciriminna, R.;Campestrini, S.;Pagliaro, M. Adv. Synth.
Catal. 2003, 345, 1261–1267.
1
4. (a) Lenz, R.;Ley, S. V. J. Chem. Soc., Perkin Trans. 1
997, 3291;(b) Griffith, W. P. Chem. Soc. Rev. 1992, 179.
1
1
5. Bailey, A. J.;Griffith, W. P.;Mostafa, S. I.;Sherwood, P.
A. Inorg. Chem. 1993, 32, 268–271.
2
2
1
1
6. Griffith, W. P.;Ley, S. V. Aldrichim. Acta 1990, 23, 13.
7. (a) Landon, P.;Collier, P. J.;Carley, A. F.;Chadwick, D.;
Papworth, A. J.;Burrows, A.;Kiely, C. J.;Hutchings, C.
J. Phys. Chem. Chem. Phys. 2003, 5, 1917–1923;(b)
Okumura, M.;Kitagawa, Y.;Yamagcuhi, K.;Akita, T.;
Tsubota, S.;Haruta, M. Chem. Lett. 2003, 32(9), 822–823.
8. Abu-Reziq, R.;Avnir, D.;Blum, J. Angew. Chem., Int. Ed.
1
7
exploiting hydrogen peroxide formed in situ and the
unique advantages of commercial sol–gel catalytic mate-
2
0
rials, these findings might open the way to the intro-
duction of environmentally friendly and cost-effective
alcohols oxidation.
1
1
2
002, 41, 4132.
9. (a) Wu, D. L.;Wight, A. P.;Davis, M. E. Chem. Commun.
2003, 758–759;(b) Bleloch, A.;Johnson, B. F. G.;Ley, S.
References and notes
V.;Price, A. J.;Shephard, D. S.;Thomas, A. W.
Commun. 1999, 1907.
Chem.
1
. Fey, T.;Fischer, H.;Bachmann, S.;Albert, K.;Bolm, C.
J. Org. Chem. 2001, 66, 8154.
. (a) Clark, J. H. Chemistry of Waste Minimisation;Chap-
man & Hall: London, 1995;(b) Anastas, P. T.;Kirchhoff,
M. M. Acc. Chem. Res. 2002, 35, 686–694.
20. The US fine chemicals manufacturer Avecia, for instance,
has recently licensed Johnson MattheyÕs sol–gel technol-
ogy for preparing organic–inorganic silica hybrid gels
doped with chiral ligands for the synthesis of valuable
cyanohydrins from ketones Rouhi, M. Chem. Eng. News
2004, 82(07), 20.
2
3
. Sheldon, R. A.;Arends, I. C. W. E.;ten Brink, G. J.;
Dijksman, A. Acc. Chem. Res. 2002, 35, 774–781.