2
456
N. Zervos, A. Kolocouris / Tetrahedron Letters 51 (2010) 2453–2456
To summarize, in a preceding paper, the B3LYP/6-31+G(d,p) cal-
culations predicted that the improper H-bonding character of
cyclohexane C–Haxꢀ ꢀ ꢀY contacts (Scheme 1) could be increased if
the Xax–Y bond vector bisects the cyclohexane ring and a sample
Michels, H. H. J. Mol. Struct. 2007, 841, 22; (h) Tsuzuki, S.; Honda, K.;
Uchimaru, T.; Mikami, M.; Fujii, A. J. Phys. Chem. A 2006, 110, 10163. and
also Refs. 2c,4a cited therein.
The presence of a hyperconjugative interaction n(Yax)?r*(C–Hax) is
diagnostic for the presence of improper hydrogen bonding: (a) Reed, A. E.;
Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899; (b) M r´ azkova, E.; Hobza,
P. J. Phys. Chem. A 2003, 107, 1032; (c) Chocholouîsova, J.; Špirko, V.; Hobza,
P. Phys. Chem. Chem. Phys. 2004, 6, 37; (d) Vijayakumar, S.; Kolandaivel, P.
THEOCHEM 2005, 734, 157; (e) Nilsson, A.; Ogasawara, H.; Cavalleri, M.;
Nordlund, D.; Nyberg, M.; Pettersson, L. G. M. J. Chem. Phys. 2005, 122,
1
6
.
1
1
of relevant structures was retrieved from the CCDC. Experimental
evidence for this structural consequence was needed and suitable
C–Haxꢀ ꢀ ꢀO contacts of different improper hydrogen-bonding inter-
action efficacy were prepared through the 2-substituted adaman-
tane derivatives 1–6, which represent the necessary cyclohexane
154505; (f) Wysokiînski, W.; Bieînko, D. C.; Michalska, D.; Zeegers-Huyskens,
T. Chem. Phys. 2005, 315, 17; (g) Kryachko, E. S.; Zeegers-Huyskens, T. J. Phys.
Chem. A 2002, 106, 6832.
See, for example: Eliel, E. L.; Manoharan, M. J. Org. Chem. 1981, 46, 1959.
(a) Engler, E. M.; Andose, J. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 8005;
1
models. The H signal separation within the cyclohexane ring
7
8
.
.
2
c-CH s increases when the strength of the hydrogen-bonding
interactions in the C–Haxꢀ ꢀ ꢀYax contacts is increased. This work
presents the first example of an experimental study of improper
H-bonded cyclohexane C–Haxꢀ ꢀ ꢀO contacts.
(
b) Belanger-Giarepy, F.; Brisse, F.; Harvey, P. D.; Butler, I. S.; Gilson, D. F. R. Acta
Crystallogr. 1987, C43, 756.
9.
Compounds 2–4 were synthesized according to the procedures reported in the
near past; Zoidis, G.; Kolocouris, N.; Fytas, G.; Foscolos, G. B.; Kolocouris, A.;
Fytas, G.; Karayannis, P.; Padalko, E.; Neyts, J.; De Clercq, E. Antivir. Chem.
Chemother. 2003, 14, 155. The preparation of compounds 5 and 6 has been
reported; Braga, D.; Chen, S.; Filson, H.; Maini, L.; Netherton, M. R.; Patrick, B.
O.; Scheffer, J. R.; Scott, C.; Xia, W. J. J. Am. Chem. Soc. 2004, 126, 3511. For the
synthesis of ketone 1, the 2-cyanoadamantane was used as the starting
material; 2-cyanoadamantane can be prepared through reaction of 2-
adamantanone with tosyl methyl isocyanate in the presence of a suitable
base. We used sodium ethoxide instead of potassium tert-butoxide as reported
by Oldenziel, O. H.; van Leusen, D.; van Leusen, A. M. J. Org. Chem. 1977, 42,
3114. The reaction of 2-cyanoadamantane with methyllithium afforded the 2-
acetyl adamantane 1:
Supplementary data
Supplementary data (computational methods used; Table S1 in-
cludes the complete second order perturbation NBO analysis for
the hyperconjugative interactions; cartesian coordinates for the
optimized conformational minima of compounds 1–6; representa-
1
tive H NMR spectra of the synthesized compounds) associated
O
C
N
O
EtONa, TosMIC
EtOH-THF, r.t.
H
1. MeLi, ether, 10 °C
2. HCl, 6N
H
References and notes
1
1
0. The C–Hꢀ ꢀ ꢀO contacts are the most common improper hydrogen-bonded
contacts encountered, especially the C–Hꢀ ꢀ ꢀO@C contacts in proteins (see Ref.
1
2
.
.
Kolocouris, A. J. Org. Chem. 2009, 74, 1842.
(a) Desiraju, G. R.; Steiner, T.. The Weak Hydrogen Bond in Structural Chemistry
and Biology. In IUCr Monographs on Crystallography; Oxford University Press,
1
).
1. For the assignment and analysis of the 1H NMR spectra of the 2-substituted
adamantane derivatives see: Kolocouris, A. Tetrahedron Lett. 2007, 48, 2117.
and Refs. 8a,9 of that paper.
1
999; Vol. 9; (b) Steiner, T. Angew. Chem., Int. Ed. Engl. 1995, 43, 2311; (c)
Panigrahi, S. K.; Desiraju, G. R. PROTEINS: Struct. Funct. Bioinform. 2007, 67, 128.
Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620. and references cited
therein.
Between the different theories included in the citations in Ref. 3, a useful
interpretation includes the combination of a hyperconjugative interaction
1
1
2. Details of the computational methods can be found in the Supplementary data.
3. Still the most popular source of van der Waals radii is an article by Bondii, A. J.
Phys. Chem. 1964, 68, 441 who gives the following values H: 1.20 Å, C: 1.70 Å,
O: 1.52 Å, N: 1.55 Å, F: 1.47 Å, Cl: 1.75 Å, S: 1.80 Å, P: 1.80 Å.; Si: 2.10 Å; using
these values the sum of the van der Waals radii is, for example, 2.72 Å for
Hꢀ ꢀ ꢀO.
3
.
.
4
n(Y)?
r
*(X–H) that weakens the X–H bond and
a
repolarization/
rehybridization in which the X–H bond s-character increases, as H becomes
more electropositive (Bent’s rule), causing strengthening of the X–H bond. The
second effect prevails, that is, improper H bonding is observed, when the
hyperconjugation is relatively weak. See: (a) Alabugin, I. V.; Manorahan, M.;
Peabody, S.; Weinhold, F. J. Am. Chem. Soc. 2003, 125, 5973; (b) Alabugin, I. V.;
Manorahan, M. J. Comp. Chem. 2007, 28, 373.
1
1
4. Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063.
5. It is noted that changes of 0.1–1 ppm in the C–H proton chemical shift have
been observed in a limited number of cases and are taken as evidence for the
existence of C–HꢀꢀꢀO hydrogen bonds in solution. Intermolecular: (a) Xiang, S.;
Yu, G.; Liang, Y.; Wu, L. J. Mol. Struct. 2006, 789, 43; (b) Wang, B.; Hinton, J. F.;
Pulay, P. J. Phys. Chem. A 2003, 107, 4683; (c) Karger, N.; Amorim da Costa, A.
M.; Ribeiro-Claro, P. J. A. J. Phys. Chem. A 1999, 103, 8672; (d) Mizuno, K.; Ochi,
T.; Shindo, Y. J. Chem. Phys. 1998, 109, 9502; (e) Godfrey, P. D.; Grigsby, W. J.;
Nichols, P. J.; Raston, C. L. J. Am. Chem. Soc. 1997, 119, 9283; Intramolecular: (f)
Donati, A.; Ristori, S.; Bonechi, C.; Panza, L.; Nartini, G.; Rossi, C. J. Am. Chem.
Soc. 2002, 124, 8778; (g) Barone, V.; Bolognese, A.; Correale, G.; Diurno, M. V.;
Monterrey-Gomez, I.; Mazzoni, O. J. Mol. Graph. Model. 2001, 19, 318; (h)
Nagawa, Y.; Yamagaki, T.; Nakanishi, H.; Nakagawa, M.; Tezuka, T. Tetrahedron
Lett. 1998, 39, 1393.
5
.
See for example: (a) CH
Chem. Phys. Lett. 1996, 251, 33; (b) Vasunov, A.; Dannenberg, J. J.; Contreras,
R. H. J. Phys. Chem. 2001, 105, 4737; CH (c) Gu, Y.; Kar, T.;
ꢀ ꢀ ꢀNH
Scheiner, S. J. Mol. Struct. 2000, 552, 17; CH
4
ꢀ ꢀ ꢀOH
2
: (a) Novoa, J. J.; Planas, M.; Rovira, M. C.
A
4
3
:
4
ꢀ ꢀ ꢀFH: (d) Vizioli, C.; Ruiz de
Azua, M. C.; Giribet, C. G.; Contreras, R. H.; Turi, L.; Dannenberg, J. J.; Rae, I.
D.; Weigold, J. A.; Malagoli, M.; Zanasi, R.; Lazzeretti, P. J. Phys. Chem. 1994,
9
1
8, 8558; CH
4
ꢀ ꢀ ꢀSH
2
: (e) Rovira, M. C.; Novoa, J. J. Chem. Phys. Lett. 1997, 279,
ꢁ
40; CH
4
ꢀ ꢀ ꢀCl : (f) Hiraoka, K.; Mizuno, R.; Iino, T.; Eguchi, D.; Yamade, S. J.
3
J. Phys. Chem. A 2001, 105, 4887; C(sp )-Hꢀ ꢀ ꢀ
p
: (g) Utzat, K.; Bohn, R. K.;