4
Tetrahedron Letters
2-substituted 6-benzyl piperidines 7a-7j, 9a-9q through
Acknowledgments
nucleophilic addition of N,O-acetals 6a-6e with organozinc
reagents. TiCl4 was found to be the most effective lewis acid for
We thank the National Natural Science Foundation of China
(21702032 to C.-M. Si and 21772027 to B.-G. Wei) and the
Open Research Fund Program of Beijing Key Lab of Plant
Resource Research and Development, BTBU (No. PRRD-2019-
YB2) for financial support. The authors also thank Dr. Han-Qing
Dong (Arvinas, Inc.) for helpful suggestions.
this transformation, and
dimethylsiloxy-2-substituted
a
variety of chiral 3-tert-butyl-
6-benzyl piperidines were
successfully synthesized in moderate to excellent yields and with
high diastereoselectivities. To the best of our knowledge, the
present process is the first direct method for the preparation of
chiral
3-tert-butyl-dimethylsiloxy-2-substituted
6-benzyl
piperidines.
1996, 100-102; (e) Plehiers, M.; Hootelé, C. Can. J. Chem. 1996,
74, 2444-2453; (f) Wee, A. G. H.; Fan, G.-J. Org. Lett. 2008, 10,
3869-3872.
References and notes
8.
9.
For the isolation of (-)-azimine, see: (a) Rall, G. J. H.; Smalberger,
T. M.; de Waal, H. L.; Arndt, R. R. Tetrahedron Lett. 1967, 8,
3465-3469; (b) Kurogome, Y.; Kogiso, M.; Looi, K. K.; Hattori,
Y.; Konno, H.; Hirota, M.; Makabe, H. Tetrahedron 2013, 69,
8349-8352.
For the isolation of (-)-carpaine, see: (a) Rapoport, H.; Baldridge,
H. D., Jr. J. Am. Chem. Soc. 1951, 73, 343-346; (b) Govindachari,
T. R.; Pai, B. R.; Narasimhan, N. S. J. Chem. Soc. 1954, 1847-
1849; For syntheses of carpaine, azimine, see: (c) Corey, E. J.;
Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614-5616; (d) Sato,
T.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2003, 5, 3839-3842.
1.
(a) Ojima, I. Catalytic Asymmetric Synthesis, Wiley-VCH:
Weinheim, 2000; (b) Tsuji, J. Transition Metal Reagents and
Catalysts: Innovations in Organic Synthesis, Wiley: Chichester,
2000.
2.
For selected recent examples, see: (a) Stempel, E.; Gaich, T. Acc.
Chem. Res. 2016, 49, 2390-2402; (b) Jamison, C. R.; Badillo, J. J.;
Lipshultz, J. M.; Comito, R. J.; MacMillan, D. W. C. Nat. Chem.
2017, 9, 1165-1169; (c) Wang, X.; Xia, D.; Qin, W.; Zhou, R.;
Zhou, X.; Zhou, Q.; Liu, W.; Dai, X.; Wang, H.; Wang, S.; Tan,
L.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y. Chem. 2017, 2, 803-
816. (d) Macha, L.; Ha, H.-J. J. Org. Chem. 2019, 84, 94-103; (e)
Tan, P. W.; Seayad, J. Tetrahedron Lett. 2019, 60, 151338; (f)
Yazaki, R.; Ohshima, T. Tetrahedron Lett. 2019, 60, 151225; (g)
Sui, J.-J.; Xiong, D.-C.; Ye, X.-S. Chin. Chem. Lett. 2019, 30,
1533-1537.
For selective recent works of natural products based on a 3-
hydroxy-2, 6-disubstituted piperidine scaffold: the reviews and
book, see: (a) Huang, P.-Q. Synlett 2006, 1133-1149; (b)
Wijdeven, M. A.; Willemsen, J.; Rutjes, F. P. J. T. Eur. J. Org.
Chem. 2010, 2831-2844; the papers for see: (c) Shu, C.; Alcudia,
A.; Yin, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 12477-
12487; (d) Noël, R.; Vanucci-Bacqué, C.; Fargeau-Bellassoued,
M.-C.; Lhommet, G. Eur. J. Org. Chem. 2007, 476-486; (e)
Arena, G.; Zill, N.; Salvadori, J.; Girard, N.; Mann, A.; Taddei, M.
Org. Lett. 2011, 13, 2294-2297; (f) Annadi, K.; Wee, A. G. H. J.
Org. Chem. 2015, 80, 5236-5251; (g) Huang, W.; Yi, X.; Feng, J.;
Wang, Y.; He, X. Phytochemistry 2017, 143, 81-86; (h) Chen, W.;
Ma, L.; Paul, A.; Seidel, D. Nat. Chem. 2018, 10, 165-169; (i) Ou,
W.; Lu, G.-S.; An, D.; Han, F.; Huang, P.-Q. Eur. J. Org. Chem.
2020, 2020, 52-56.
For selective biological activities of 3-hydroxy-2,6-substituted
piperidine scaffold: the reviews and book, see: (a) Strunz, G. M.;
Findlay, J. A. in: A. Brossi (Ed.), The Alkaloids, vol. 26,
Academic Press, San Diego, 1986, 89; (b) Butler, M. S. J. Nat.
Prod. 2004, 67, 2141-2153; the papers, see: (c) Taylor, R. D.;
MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845-
5859; (d) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med.
Chem. 2014, 57, 10257-10274; (e) de Castro, A. T.; Castro, A. P.;
Silva, M. S.; de Souza, I. M. M.; Martins-Souza, R. L.; Chagas-
Paula, D. A.; Coelho, L. F. L.; da Silva Bolzani, V.; Pivatto, M.;
Viegas, C.; Marques, M. J. Bioorg. Med. Chem. Lett. 2016, 26,
4197-4204.
For the isolation of hyacinthacine B5, see: (a) Yamashita, T.;
Yasuda, K.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.;
Fleet, G. W. J.; Asano, N. J. Nat. Prod. 2002, 65, 1875-1881; For
selected syntheses of hyacinthacine B5, see: (b) Savaspun, K.; Au,
C. W. G.; Pyne, S. G. J. Org. Chem. 2014, 79, 4569-4581.
For the isolation of (-)-morusimic acid D, see: Kusano,
10. A review in the synthesis of 2,6-disubstituted hydroxypiperidine
alkaloids: (a) Makabe, H. Stud. Nat. Prod. Chem. 2014, 42, 353-
371; other methods to synthesis 2,6-disubstituted piperidine: (b)
Szcześniak, P.; Stecko, S.; Maziarz, E.; Staszewska-Krajewska,
O.; Furman, B. J. Org. Chem. 2014, 79, 10487-10503.
11. Yoda, H.; Yamazaki, H.; Takabe, K. Tetrahedron: Asymmetry
1996, 7, 373-374.
12. (a) Han, P.; Si, C.-M.; Mao, Z.-Y.; Li, H.-T.; Wei, B.-G.; Du, Z.-T.
Tetrahedron 2016, 72, 862-867; (b) Si, C.-M.; Mao, Z.-Y.; Ren, R.-
G.; Du, Z.-T.; Wei, B.-G. Tetrahedron 2014, 70, 7936-7941.
13. Liu, Y.-W.; Ma, R.-J.; Yan, J.-H.; Zhou, Z.; Wei, B.-G. Org.
Biomol. Chem. 2018, 16, 771-779.
3.
14. (a) Bhanu Prasad, A. S.; Stevenson, T. M.; Citineni, J. R.; Nyzam,
V.; Knochel, P. Tetrahedron 1997, 53, 7237-7254; (b) Picotin, G.;
Miginiac, P. J. Org. Chem. 1987, 52, 4796-4798; (c) Erdik, E.
Tetrahedron 1987, 43, 2203-2212.
15. (a) Sakai, N.; Asano, J.; Kawada, Y.; Konakahara, T. Eur. J. Org.
Chem. 2009, 2009, 917-922; (b) Wang, X.-M.; Liu, Y.-W.; Ma,
R.-J.; Si, C.-M.; Wei, B.-G. J. Org. Chem. 2019, 84, 11261-11267.
16. Tsujiyama, H.; Ono, N.; Yoshino, T.; Okamoto, S.; Sato, F.
Tetrahedron Lett. 1990, 31, 4481-4484; (b) Hu, Y.; Yu, J.; Yang,
S.; Wang, J.-X.; Yin, Y. Synth. Commun. 1998, 28, 2793-2800; (c)
Kanai, K.; Wakabayashi, H.; Honda, T. Org. Lett. 2000, 2, 2549-
2551; (d) Zhou, W.; Yan, W.; Wang, J.-X.; Wang, K. Synlett,
2008, 2008, 137-141; (e) Fan, X.; Walsh, P. J. Acc. Chem. Res.
2017, 50, 2389-2400.
17. Fu, Y.; Liu, Y.; Chen, Y.; Hügel, H. M.; Wang, M.; Huang, D.;
Hu, Y. Org. Biomol. Chem. 2012, 10, 7669-7672.
18. Wang, J.-X.; Fu, Y.; Hu, Y. Angew. Chem., Int. Ed. 2002, 41,
2757-2760.
19. Huang, W.; Ye, J.-L.; Zheng, W.; Dong, H.-Q.; Wei, B.-G. J. Org.
Chem. 2013, 78, 11229-11237.
20. Si, C.-M.; Huang, W.; Du, Z.-T.; Wei, B.-G.; Lin, G.-Q. Org. Lett.
2014, 16, 4328-4331.
4.
5.
6.
21. Thomas, E. W.; Rynbrandt, R. H.; Zimmermann, D. C.; Bell, L.
T.; Muchmore, C. R.; Yankee, E. W. J. Org. Chem., 1989, 54,
4535-4543.
22. CCDC 1990470 contains the supplementary crystallographic data
for this paper.
G.; Orihara,
S.; Tsukamoto,
D.; Shibano,
M.; Coskun,
M.; Guvenc, A.; Erdurak, C. S. Chem. Pharm. Bull. 2002, 50, 185-
192; For selected syntheses of morusimic acid D, see: (b) Yu, D.-
S.; Xu, W.-X.; Liu, L.-X.; Huang, P.-Q. Synlett 2008, 1189-1192;
(c) Xiao, K.-J.; Wang, Y.; Huang, Y.-H.; Wang, X.-G.; Huang, P.-
Q. J. Org. Chem. 2013, 78, 8305-8311;
Supplementary Material
Supplementary material that may be helpful in the review process
should be prepared and provided as a separate electronicfile. That
file can then be transformed into PDF format and submitted
along with the manuscript and graphic files to the appropriate
7.
For the isolation of (−)-sedacryptine, see: (a) Hootelé, C.; Colau,
B.; Halin, F.; Declercq, J. P.; Germain, G.; Van Meerssche, M.
Tetrahedron Lett. 1980, 21, 5061-5062; (b) Colau, B.; Hootelé, C.
Can. J. Chem. 1983, 61, 470-472; For selected syntheses of
sedacryptine, see: (c) Natsume, M.; Ogawa, M. Heterocycles
1983, 20, 601-605; (d) Akiyama, E.; Hirama, M. Synlett 1996,
editorial
office.
☒ The authors declare that they have no known
competing financial interests or personal
Declaration of interests