3
On the basis of the above results and the literature reports [10]
,
reactions between a wide range of arylpropiolic acid and cyclic
a plausible mechanism containing a radical oxidative coupling
process is illustrated in Scheme 2. Using the reaction of
phenylpropiolic acid (1a) and THF as an example, the reaction
should be initiated by the cleavage of DTBP to gives a tert-
butoxy radical, which abstracts a hydrogen atom from THF to
afford radical I. The radical I may engage on two competing
pathways, i.e., addition to the 2-position carbon in intermediate
II, generated from the reaction of phenylpropiolic acid (1a) with
potassium carbonate and nickel chloride, to produce intermediate
III. The other pathway is addition to the 3-position carbon in
phenylpropiolic acid (1a) to generate the intermediate VI, which
produces the stable cinnamic acid 6 through hydrogen abstraction
of THF. The intermediate III then proceeds via an abstraction of
THF to generate intermediate IV, which undergoes an
elimination through a single electron transfer process to release
carbon dioxide, alkenyl radical V and Ni(I). Alkenyl radical V
abstracts a hydrogen atom from THF to generate the product 3a.
Ni(II) would be regenerated by oxidation of Ni(I) with a tert-
butoxy radical and converted to intermediate II to complete the
catalytic cycle. Ni(II) might have two roles in this reaction: one is
the formation of salt with phenylpropiolic acid to facilitate the 2-
position attack by I; the other is to facilitate the radical
decarboxylatioin of intermediate III.
ethers. Based on the control experiments, a radical mechanism
was proposed.
Acknowledgments
We acknowledge Dr. Xiaofeng Yuan and Dr. Rongbin Cai for
detailed NMR structure determination for compounds 3a–s.
References and notes
1. (a) Li, C. J. Acc Chem Res 2009, 42, 335-344; (b) Davies, H. M.;
Morton, D. Chem Soc Rev 2011, 40, 1857-1869; (c) Yeung, C. S.;
Dong, V. M. Chem Rev 2011, 111, 1215-1292; (d) Sun, C. L.; Li,
B. J.; Shi, Z. J. Chem Rev 2011, 111, 1293-1314; (e) Zhang, S. Y.;
Zhang, F. M.; Tu, Y. Q. Chem Soc Rev 2011, 40, 1937-1949; (f)
Hartwig, J. F. J Am Chem Soc 2016, 138, 2-24; (g) Karkas, M. D.
Chem Soc Rev 2018, 47, 5786-5865.
2. (a) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.;
Baudoin, O. Chem Eur J 2010, 16, 2654-2672; (b) Bellina, F.;
Rossi, R. Chem Rev 2010, 110, 1082-1146; (c) McMurray, L.;
O'Hara, F.; Gaunt, M. J. Chem Soc Rev 2011, 40, 1885-1898; (d)
Baudoin, O. Chem Soc Rev 2011, 40, 4902-4911; (e) Li, B. J.; Shi,
Z. J. Chem Soc Rev 2012, 41, 5588-5598; (f) Rouquet, G.;
Chatani, N. Angew Chem Int Ed 2013, 52, 11726-11743.
3
.
(a) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem Rev 2011, 111,
981-3019; (b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H.
2
Chem Rev 2012, 112, 5879-5918; (c) Mo, J.; Muller, T.; Oliveira,
J. C. A.; Ackermann, L. Angew Chem Int Ed 2018, 57, 7719-7723.
(a) Guo, S. R.; Kumar, P. S.; Yang, M. H. Adv Synth Catal 2017,
4
.
3
2
59, 2-25; (b) Batra, A.; Singh, P.; Singh, K. N. Eur J Org Chem
017, 26, 3739-3762; (c) Liu, D.; Liu, C.; Li, H.; Lei, A. Angew
Chem Int Ed 2013, 52, 4453-4456; (d) Deng, H. P.; Fan, X. Z.;
Chen, Z. H.; Xu, Q. H.; Wu, J. J Am Chem Soc 2017, 139, 13579-
1
5
2
3584; (e) Gu, Z.; Tang, Y.; Jiang, G. F. J Org Chem 2017, 82,
441-5448; (f) Ghosh, T.; Maity, P.; Ranu, B. C. Org Lett 2018,
0, 1011-1014.
5
.
(a) Miles, S. M.; Marsden, S. P.; Leatherbarrow, R. J.; Coates, W.
J. J Org Chem 2004, 69, 6874-6882; (b) Kumar, V.; Shaw, A. K. J
Org Chem 2008, 73, 7526-7531; (c) Ghosal, P.; Sharma, D.;
Kumar, B.; Meena, S.; Sinha, S.; Shaw, A. K. Org Biomol Chem
2
011, 9, 7372-7383; (d) Mammoli, V.; Bonifazi, A.; Del Bello, F.;
Diamanti, E.; Giannella, M.; Hudson, A. L.; Mattioli, L.; Perfumi,
M.; Piergentili, A.; Quaglia, W.; Titomanlio, F.; Pigini, M. Bioorg
Med Chem 2012, 20, 2259-2265; (e) Roughley, S. D.; Jordan, A.
M. J Med Chem 2011, 54, 3451-3479; (f) Nakata, T. Chem Rev
Scheme 1. Control experiments
2
005, 105, 4314-4347; (g) Albrecht, U.; Lalk, M.; Langer, P.
Bioorg Med Chem 2005, 13, 1531-1536; (h) Scherlach, K.;
Hertweck, C. Org Biomol Chem 2006, 4, 3517-3520.
6
.
(a) Malmstrøm, J.; Christophersen, C.; Barrero, A. F.; Oltra, J. E.;
Justicia, J.; Rosales, A. J Nat Prod 2002, 65, 364-367; (b) Liu, C.;
Zhong, S. M.; Chen, R. Y.; Wu, Y.; Zhu, X. J. J Asian Nat Prod
Res 2009, 11, 845-859; (c) Negi, N.; Jinguji, Y.; Ushijima, K.;
Ikeda, S.; Takemura, Y.; Ju-ichi, M.; Wu, T. S.; Ito, C.; Furukawa,
H. Chem Pharm Bull 2004, 52, 362-364.
7
8
.
.
(a) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.
K.; Lei, A. Chem Rev 2017, 117, 9016-9085; (b) Lu, Q.; Glorius,
F. Angew Chem Int Ed 2017, 56, 49-51; (c) Hu, X. Q.; Chen, J. R.;
Xiao, W. J. Angew Chem Int Ed 2017, 56, 1960-1962.
(a) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem Soc
Rev 2011, 40, 4740-4761; (b) Ramirez, T. A.; Zhao, B.; Shi, Y.
Chem Soc Rev 2012, 41, 931-942; (c) Newhouse, T.; Baran, P. S.
Angew Chem Int Ed 2011, 50, 3362-3374; (d) Shang, X. J.; Liu, Z.
Q. Acta Chim Sinica 2015, 73, 1275-1282; (e) Tang, S.; Liu, Y.;
Gao, X.; Wang, P.; Huang, P.; Lei, A. J Am Chem Soc 2018, 140,
6
006-6013; (f) Niu, L.; Wang, S.; Liu, J.; Yi, H.; Liang, X. A.;
Liu, T.; Lei, A. Chem Commun 2018, 54, 1659-1662.
9
.
(a) Goossen, L. J.; Rodriguez, N.; Goossen, K. Angew Chem Int
Ed 2008, 47, 3100-3120; (b) Dzik, W. I.; Lange, P. P.; Gooßen, L.
J. Chem Sci 2012, 3, 2671-2678; (c) Rodriguez, N.; Goossen, L. J.
Chem Soc Rev 2011, 40, 5030-5048; (d) Kautzky, J. A.; Wang, T.;
Evans, R. W.; MacMillan, D. W. C. J Am Chem Soc 2018, 140,
Scheme 2. Plausible mechanism of the cross decarboxylative
coupling.
In conclusion, we have described a direct alkenylation of
cyclic ether via cross radical decarboxylative coupling process
6
522-6526; (e) Liang, Y.; Zhang, X.; MacMillan, D. W. C. Nature
2018, 559, 83-88; (f) Yang, S.; Hua, W.; Wu, Y.; Hu, T.; Wang,
F.; Zhang, X.; Zhang, F. Chem Commun 2018, 54, 3239-3242. (g)
Goossen, L. J.; Rudolphi, F.; Oppel, C.; Rodriguez, N. Angew
Chem Int Ed 2008, 47, 3043-3045; (h) Zhang, F.; Greaney, M. F.
catalyzed by NiCl
2
and using DTBP as radical initiator and
oxidant. This catalytic system is suitable for the coupling