Please do not adjust margins
Page 5 of 6
Green Chemistry
Journal Name
COMMUNICATION
process is not confirmed, but it might be probably obtained by
the reduction of cationic intermediate25 [Cp*CoOAc]+, which
can be formed by the interaction of 1 and Cu(OAc)2. However,
there is possibility that amine may be involve in this reduction
process.26 Intermediate (2) undergoes oxidative addition with
arylchloride to give adduct (3). This interact with amine and
produce an intermediate (4) and eliminate an ammonium salt,
formed by interactions of HCl and available amine.
Intermediate (4) undergoes reductive elimination and
ultimately produces the desired product and regenerates the
Cp*Co(I) complex for the next catalytic cycle.
MRC, MNIT Jaipur for providing characterisation facilities.
DOI: 10.1039/D0GC02819C
Notes and references
1
2
3
4
W. Liu, B. Sahoo, K. Junge, M. Beller, Acc. Chem. Res. 2018,
51, 1858−1869
W. Ai, R. Zhong, X. Liu, Q. Liu, Chem. Rev. 2019, 119, 2876-
2953
S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, Angew.
Chem. Int. Ed. 2017, 56, 16136–16179
(a) F. Ullmann, J. Bielecki, Berichte der deutschen chemischen
Gesellschaft 1901, 34, 2174 – 3185; (b) M. S. Kharascah, E. K.
Fields, J. Am. Chem. Soc. 1941, 63, 2316-2320
R. Hili, A. K. Yudin, Nature Chemical Biology 2006, 2, 284–287
P. A. Forero-Cortés, A. M. Haydl, Org. Process Res. Dev. 2019,
238, 1478-1483
5
6
7
8
9
R. W. Dugger, J. A. Ragan, D. H. B. Ripin, Org. Process Res.
Dev. 2005, 9, 253 - 258
J. Bariwal, E. Van der Eycken, Chem. Soc. Rev. 2013, 42, 9283
- 9283
G. C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151 -
5169
10 D. R. Pye, N. P. Mankad, Chem. Sci. 2017, 8, 1705 – 1718.
11 M. M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, M. J.
Malmir, Organomet. Chem. 2018, 861, 17 - 104
12 C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan,
Chem. Soc. Rev. 2014, 43, 3525-3550
13 Y. Sunesson, E. Limé, S. O. N. Lill, R. E. Meadows, P. J. Norrby,
Org. Chem. 2014, 79, 11961−11969
14 J. C. Vantourout, H. N. Miras, A. I. Llobet, S. Sproules, A. J. B.
Watson, J. Am. Chem. Soc. 2017, 139, 4769-4779
15 R. Dorel, C. P. Grugel, A. M. Haydl, Angew. Chem. Int. Ed.
2019, 58, 17118 - 17129
16 (a) Y. Sunada, H. Kawakami, T. Imaoka, Y. Motoyama, H.
Nagashima, Angew. Chem. Int. Ed. 2009, 48, 9511 –9514. (b)
P. Mathur, R. K. Joshi, B. Jha, A. K. Singh, S. M. Mobin, J.
Organomet. Chem. 2010, 695, 2687 – 2694. (c) M. Bourrez, F.
Molton, S. Chardon-Noblat, A. Deronzier, Angew. Chem. Int.
Ed. 2011, 50, 9903-9906. (d) P. Mathur, R. K. Joshi, D. K. Rai,
B. Jha, S. M. Mobin, Dalton Trans. 2012, 41, 5045 - 5054.
17 (a) P. Mathur, B. Jha, R. Raghuvanshi, R. K. Joshi, S. M.
Mobin, J. Organomet. Chem. 2012, 712, 7 – 14. (b) T.
Dombray, C. Helleu, C. Darcel, J.-B. Sortais, Adv. Synth. Catal.
2013, 355, 3358-3362. (c) P. Mathur, D. K. Rai, R. K. Joshi, B.
Jha, S. M. Mobin, Organometallics 2014, 33, 3857 – 3866. (d)
Z. Maeno, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Chem. Commun. 2014, 50, 6526
18 (a) P. Mathur, D. K. Rai, R. K. Joshi, B. Jha, S. M. Mobin,
Organometallics 2014, 33, 3857 – 3866. (b) R. K. Joshi, N.
Satrawala, Tetrahedron Lett. 2017, 58, 2931 – 2935. (c) S.
Pandey, K. V. Raj, D. R. Shinde, K. Vanka, V. Kashyap, S.
Kurungot, C. P. Vinod, S. H. Chikkali, J. Am. Chem. Soc. 2018,
140, 4430–4439
19 P. G. Chirila, C. J. Whiteoak, Dalton Trans. 2017, 46, 9721-
9739
20 A. K. Srivastava, N. Satrawala, M. Ali, Charu Sharma, R. K.
Joshi, Tetrahedron Lett. 2019, 60, 151283
21 S. Fukagawa, Y. Kato, R. Tanaka, M. Kojima, T. Yoshino, S.
Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 1153 – 1157.
22 B. Khan, V. Dwivedi, B. Sundararaju, Adv. Synth. Catal. 2020,
362, 1195 - 1200
23 B. H. Lipshutz, D. M. Nihan, E. Vinogradova, B. R. Taft, Z. V.
Boskovic, Organic Lett. 2008, 10, 4279 – 4282
Scheme 10. The plausible mechanism for the catalytic reaction
Conclusions
A bimetallic catalytic system consisting of Cp*Co(CO)I2 and
Cu(OAc)2 complexes catalytically coupled the aryl chloride and
amines and established a strongly feasible strategy for the C-N
coupling reactions. The present method demands very less
amount of inexpensive Co and Cu metal catalyst and works
efficiently in base free and solvent-free conditions. The
present strategy is also found to be highly suitable for the
primary and secondary aliphatic amines, benzylic amines and
aniline. Moreover, the reaction has a bit advantages for the
electron-withdrawing functionalized aryl halides, moreover,
this is the first report of Cp*Co(III) catalysed cross-coupling of
aryl chloride and amines.
Conflicts of interest
“There are no conflicts to declare”.
24 C. Sharma, A. K. Srivastava, K. N. Sharma, R. K. Joshi, Org.
Biomol. Chem. Org. Biomol. Chem., 2020, 18, 3599-3606
25 J. Ghorai, A. C. S. Reddy, P. Anbarasan Chem. Eur. J. 2016, 22,
16042 – 16046.
26 J. D. S. Newman, G. J. Blanchard Langmuir 2006, 22, 5882-
5887.
Acknowledgements
Raj K. Joshi, thanks to CSIR (01(2996)/19/EMR-II) for financial
assistance. Avinash K. Srivastava and Charu Sharma thanks to MNIT
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins