10.1002/cctc.201901815
ChemCatChem
FULL PAPER
room temperature the sample was degassed at 353 K (heating ramp
of 0.5 °C·min-1). After 1 h delay at 353 K, the temperature was further
increased up to 383 K with the same heating ramp and the sample
was degassed for 5 h. After that tube with the sample was filled with
N2 and cooled down to room temperature.
1700618.
[3]
[4]
[5]
[6]
[7]
[8]
Y.-B. Zhou, Z.-P. Zhan, Chem. – An Asian J. 2018, 13, 9–
19.
K. Dong, Q. Sun, X. J. Meng, F. S. Xiao, Catal. Sci.
Technol. 2017, 7, 1028–1039.
Q. Sun, Z. F. Dai, X. J. Meng, F. S. Xiao, Chem. Soc. Rev.
2015, 44, 6018–6034.
S. K. Kundu, A. Bhaumik, Acs Sustain. Chem. Eng. 2015,
3, 1715–1723.
P. Kaur, J. T. Hupp, S. T. Nguyen, ACS Catal. 2011, 1,
819–835.
L. Sekerová, M. Lhotka, E. Vyskočilová, T. Faukner, E.
Slováková, J. Brus, L. Červený, J. Sedláček, Chem. – A
Eur. J. 2018, 24, 14742–14749.
The content of sulfur was evaluated using Elementar vario EL Cube
(Elementar) in the CHNS module.
The scanning electron microscopy (SEM) was performed on Tescan
Lyra 3 (Tescan, CZ).
Temperature programmed desorption (TPD) of pyridine was carried
out using AutoChem II 2920 (Micromeritics Instrument), both thermal
conductivity detector (TCD) and quadrupole mass spectrometer
(MKR Cirrus 2 Analyzer) with a capillary-coupling system were used.
The samples (0.06 g) were heated in ultrahigh-purity helium
(30 ml·min-1) at 160 °C (1 h) to activate the surface. The adsorption
temperature of pyridine was 150 °C, measured pulses of pyridine
vapour (pulse volume, 5 ml) were injected into helium gas and carried
through the catalyst sample until saturated adsorption. Then the
sample was flushed with helium for 2 hours to remove physisorbed
pyridine. Afterwards the linear temperature program (5 K·min-1)
started and the sample was heated up to temperature of 500 °C. The
desorbed amounts of pyridine were determined by calibration of the
intensity of 79 amu MS response.
[9]
B. M. Antunes, A. E. Rodrigues, Z. Lin, I. Portugal, C. M.
Silva, Fuel Process. Technol. 2015, 138, 86–99.
S. Schlick, E. Bortel, K. Dyrek, Acta Polym. 1996, 47, 1–15.
P. Drabina, J. Svoboda, M. Sedlák, Mol. 2017, 22, 865-883.
J. Sedláček, M. Pacovská, D. Rédrová, H. Balcar, A. Biffis,
B. Corain, J. Vohlídal, Chem. – A Eur. J. 2002, 8, 366–371.
A. Corma, Chem. Rev. 1997, 97, 2373–2420.
J. E. Romo, N. V Bollar, C. J. Zimmermann, S. G.
Wettstein, ChemCatChem 2018, 10, 4805–4816.
H. Balcar, J. Čejka, Catal. 2019, 9, 743-761.
Z. Xie, C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc.
2011, 133, 2056–2059.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
J. Chen, H. Li, M. Zhong, Q. Yang, Green Chem. 2016, 18,
6493–6500.
Y. Xie, T. T. Wang, X. H. Liu, K. Zou, W. Q. Deng, Nat.
Commun. 2013, 4, DOI 10.1038/ncomms2960.
H. Lv, W. Wang, F. Li, Chem. – A Eur. J. 2018, 24, 16588–
16594.
X. Du, Y. Sun, B. Tan, Q. Teng, X. Yao, C. Su, W. Wang,
Chem. Commun. 2010, 46, 970–972.
V. S. Mothika, P. Sutar, P. Verma, S. Das, S. K. Pati, T. K.
Maji, Chem. – A Eur. J. 2019, 25, 3867–3874.
Y. Lan, C. Yang, Y. Zhang, W. An, H. Xue, S. Ding, P.
Zhou, W. Wang, Polym. Chem. 2019, 10, 3298–3305.
X. Wang, X. Zhao, W. Dong, X. Zhang, Y. Xiang, Q. Huang,
H. Chen, J. Mater. Chem. A 2019, 7, 16277–16284.
L. Havelková, A. Hašková, B. Bashta, J. Brus, M. Lhotka, E.
Vrbková, M. Kindl, E. Vyskočilová, J. Sedláček, Eur. Polym.
J. 2019, 114, 279–286.
S. Bhunia, B. Banerjee, A. Bhaumik, Chem. Commun.
2015, 51, 5020–5023.
R. M. N. Kalla, M. R. Kim, I. Kim, Ind. Eng. Chem. Res.
2018, 57, 11583–11591.
R. M. N. Kalla, S. S. Reddy, I. Kim, Catal. Letters 2019,
149, 2696–2705.
J. Guadalupe, A. M. Ray, E. M. Maya, B. Gómez-Lor, M.
Iglesias, Polym. Chem. 2018, 9, 4585–4595.
R. Gomes, P. Bhanja, A. Bhaumik, J. Mol. Catal. A: Chem.
2016, 411, 110–116.
M. Du, A. M. Agrawal, S. Chakraborty, S. J. Garibay, R.
Limvorapitux, B. Choi, S. T. Madrahimov, S. T. Nguyen,
ACS Sustain. Chem. Eng. 2019, 7, 8126–8135.
S. Chakraborty, Y. J. Colón, R. Q. Snurr, S. T. Nguyen,
Chem. Sci. 2015, 6, 384–389.
E. Slováková, A. Zukal, J. Brus, H. Balcar, L. Brabec, D.
Bondarev, J. Sedláček, Macromol. Chem. Phys. 2014, 215,
1855–1869.
E. Slováková, M. Ješelnik, E. Žagar, J. Zedník, J. Sedláček,
S. Kovačič, Macromolecules 2014, 47, 4864–4869.
V. Hankova, E. Slovakova, J. Zednik, J. Vohlidal, R.
Sivkova, H. Balcar, A. Zukal, J. Brus, J. Sedlacek,
Macromol. Rapid Commun. 2012, 33, 158–163.
X. Wang, L. Zhang, Z. Guo, Y. Shi, Y. Zhou, J. Wang, Appl.
Surf. Sci. 2019, 478, 221–229.
GC analyses of reaction mixture samples were performed on (i)
Shimadzu GC 2010 chromatograph equipped with a flame ionisation
detector and non-polar column ZB-5 (Zebron) (for Prins cyclization
and esterification); (ii) Shimadzu GC-17A chromatograph equipped
with a flame ionization detector and polar column Stabilwax-DB
(Restek) (for cyclization of citronellal). Identification of product
structures in reaction mixtures were performed using Shimadzu GC
2010 Plus chromatograph equipped with a mass spectrometer
Shimadzu GC-MS QP 2010 Ultra and non-polar column ZB-1
(Zebron).
[25]
[26]
[27]
[28]
[29]
[30]
Acknowledgements
We acknowledge grant project GACR 17-03474S and GAUK 210119.
This work was realized within the Operational Programme Prague –
Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of
Sustainability” ((NPU I LO1613) MSMT-43760/2015), and we also
acknowledge Specific University Research project (MSMT No 21-
SVV/2019). This work has also been supported by Charles University
Research Centre program No. UNCE/SCI/014.
[31]
[32]
[33]
[34]
Keywords: catalysis•cyclization•sulfonation•porous polymer
catalysts•hyper-cross-linked
[35]
[36]
[1]
[2]
H. Bohra, P. Li, C. Yang, Y. Zhao, M. Wang, Polym. Chem.
2018, 9, 1972–1982.
G. Deng, Z. Wang, Macromol. Rapid Commun. 2018, 39,
T. Sakaguchi, K. Kameoka, T. Hashimoto, J. Polym. Sci.
Part A:Polym. Chem. 2009, 47, 6463–6471.
This article is protected by copyright. All rights reserved.