4
Tetrahedron
12. A. Alanine, A. Flohr, A. K. Miller, R. D. Norcrossand, C.
.
Riemer, PCTInt. Appl, WO2001097786, 2001.
13. For a review on synthesis of 2-aminobenzothiazoles, see:
(a) T. L. Dadmal, S. D. Katre, M. C. Mandewale, R. M.
Kumbhare, New J. Chem. 2018; 42; 776;
(b) N. P. Prajapati, R. H. Vekariya, M. A. Borad, H. D.
Patel, RSC Adv. 2014; 4: 60176.
14. For selected references on synthesis of 2-aminobenzothiazoles
by domino condensation/α-arylation/cyclization, see: (a) G.
Satish, K. Harsha Vardhan Reddy, K. Ramesh, K. Karnakar Y.
V. D. Nageswar, Tetrahedron Lett. 2012; 53: 2518;
(b) D. Ma, X. Lu, L. Shi, H. Zhang, Y. Jiang
X. Liu, Angew. Chem. Int. Ed. 2011; 50:1118.
15. (a) S. Sawhney, D. Boykin, J. Org. Chem. 1979; 44: 1136.
(b) I. Caleta, M. Cetina, A. Hergold-Brundic, A. Nagl, G.
Karminski-Zamola, Struct. Chem. 2003; 14: 585.
16. H. S. Dong, J. Molecular Structure, 2002; 608:41.
17. R. Deshmukh, A. S. Thakur, A. K. Jha, R. Deshmukh, Int.
J. Res. Pharm. Chem. 2011; 1: 329.
18. J. Malik, F. Manvi, B. Nanjwade S. Singh. Drug Invention
Today. 2009; 1: 32.
19. (a) D. Munirajasekhar, M. Himaja, V. Sunil, Int. Res. J.
Pharm. 2011; 2:114;
(b) D. Munirajasekhara, M. Himaja, S. Mali, A. Karigar, M.
Sikarwar, J. Pharm. Res. 2011; 4: 2186.
20. G. Alang, R. Kaur, A. Singh, P. Budhlakoti, A. Singh, R.
Sanwal, Int .J. Pharm. Biol. Arch., 2010; 1:56.
21. T. Manju-thej, K. Chaluvaraju, M. Niranjan, M. Zaranappa, M.
Krishnappa, Int. J. Pharm. 2012; 1:75.
31. (a) S. Mitra, M. Ghosh, S. Mishra, A. Hajra, J. Org. Chem.
2015; 80: 8275;
(b) P. Chauhan, R. P. S. Kumar, N. Jain, Eur. J. Org. Chem.
2019: 4334.
32. General procedure for the synthesis of 2-aminobenzothiazoles 2:
A mixture of aniline 1 (1 mmol), NH4SCN 2 (1.0 mmol),
ruthinium (2 mol%), and CH3CN (3 mL) was taken in a flask
open to air and stirred at rt for 10-18 h (Table 2). After
completion of the reaction (monitored by TLC), water (5 mL)
was added and the mixture was extracted with ethyl acetate
(3 × 5 mL). The combined organic phase was dried over
anhydrous Na2SO4, filtered, and evaporated under reduced
pressure. The resulting crude product was purified by silica
gel chromatography using a mixture of hexane/ethyl acetate
(4:1) as eluent to afford an analytically pure sample of product
2. All the compounds 2 are known and were characterized by
comparison of their spectral data with those reported in the
literature.33 Characterization data of representative compounds 2
are given below with relevant reference:
Compound 2a:33b 1H NMR (400 MHz, CDCl3) δ: 7.59 (d, J = 8.3
Hz, 1H), 7.55 (d, J = 8.2 Hz, 1H), 7.31(t, J = 7.6 Hz, 1H), 7.12 (t,
J = 7.5 Hz, 1H), 5.67 (bs, 2H, NH2), 13C NMR (100 MHz, CDCl3)
δ: 166.4, 152.3, 131.8, 126.3, 122.5, 121.2, 119.5. HRMS (EI)
Calcd for C7H6N2S: 150.0252, found, 150.0256.
Compound 2f: 33a 1H NMR (400 MHz, CDCl3) δ: 7.42 (d, J = 8.7
Hz, 1H), 7.33 (dt, J = 10.6, 5.1 Hz, 3H), 7.07 (t, J = 7.4Hz, 1H),
6.95 (d, J = 8.5 Hz, 3H), 6.89 (s, 2H); 13C NMR (100 MHz,
CDCl3) δ: 167.6, 159.9, 152.7, 150.8, 134.1, 131.1, 123.9, 120.4,
119.0, 118.9,113.3 HRMS (EI) Calcd for C13H1oN2OS: 242.0514,
found, 242.0511.
22. A. W. Chow, S. P. Bitler, P. E. Penwell, D. J. Osborne, J. F.
Wolfe, Macromolecules 1989; 22: 3514.
23. Y. Xu, B. Li, X. Fan, J. Org. Chem. 2017; 82:9637.
24. S. N. M. Boddapati, C. M. Kurmarayuni, B. R. Mutchu, R.
Tamminanac, H. B. Bollikolla, Org. Biomol. Chem. 2018;
16:6889.
25. (a) R. Wang, Y. L. Ding, H. Liu, S. Peng, J. Ren, L. Li,
Tetrahedron Lett. 2014; 55: 945;
Compound 2h:33a 1H NMR (400 MHz, CDCl3) δ: 8.24 (d, J = 1.8
Hz, 1H), 7.79 (m, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.33 (s, 2H), 3.10
(s, 3H); 13C NMR (100 MHz, CDCl3) δ: 171.5, 158.5,
135.1, 133.5, 126.5, 122.2, 119.5, 45.5. HRMS (EI) Calcd for
C8H8N2OS: 228.0027, found, 228.0031.
33. (a) H. Jiang, W. Yu, X. Tang, J. Li, W. Wu, J. Org. Chem. 2017;
82: 9312;
(b) H. Yu, M. Zhang and Y. Li, J. Org. Chem. 2013; 78:
8898;
(c) X. Zhang, W. Zeng, Y. Yang, H. Huang, Y. Liang, Org.
Lett. 2014; 16:876;
(d) H. Deng, Z. Li, F. Ke X. Zhou, Chem.–Eur. J. 2012;
18:4840;
(b) T. Castanheiro, J. Suffert, M. Gulea, M. Donnard, Org. Lett.
2016; 18: 2588;
(c) T. Morofuji, A. Shimizu, J.-I. Yoshida, Chem. Eur. J.
2015;21:1.
26. (a) Y. Cheng, Q. Peng, W. Fan, P. Li, J. Org. Chem. 2014,
79, 5812;
Declaration of interests
(b) K. Inamoto, C. Hasegawa, J. Kawasaki, K. Hiroya, Adv.
Synth. Catal. 2010; 352:2643;
(c) S. Toulot, T. Heinrich F. R. Leroux, Adv. Synth. Catal.
2013;355:3263;
(d) A. Majumder, R. Gupta, M. Mandal, M. Babu,
D. Chakraborty, J. Organomet. Chem. 2015; 781: 23.
27. (a) Y. Cheng, J. Yang, Y. Qu, P. Li, Org. Lett. 2012; 14:
98;
The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.
(b) G. Zhang, C. Liu, H. Yi, Q. Meng, C. Bian, H. Chen,
J. X. Jian, L. Z. Wu, A. Lei, J. Am. Chem. Soc. 2015; 137:
9273.
28. (a) J. W. Qiu, X. G. Zhang, R. Y. Tang, P. Zhong, J. H.
Lia, Adv. Synth. Catal. 2009; 351:2319;
(b) Q. Ding, B. Cao, X. Liu, Z. Y. Zong, Y. Peng, Green
Chem. 2010; 12: 1607;
(c) H. Wang, L. Wang, J. Shang, X. Li, H. Wang, J. Gui, A.
Lei, Chem. Commun. 2012; 48: 76.
Highlights
Photocatalytic approach to 2-
aminobenzothiazoles.
29. H. Jiang, W. Yu, X. Tang, J. Li, W. Wu, J. Org. Chem. 2017;
82: 9312.
30. (a) M. Singh, A. K. Yadav, L. D. S. Yadav, Synlett, 2018;
29:176
Visible-light-promoted radical
reactions.
(b) A. K. Yadav, L. D. S. Yadav, Tetrahedron Lett. 2017;
58:552;
(c) M. Singh, A. K. Yadav, L. D. S. Yadav, Tetrahedron Lett.
2017; 58: 2206;
(d) A. K. Yadav, L. D. S. Yadav, Chem. Commun.
2016;52:10621;
(e) A. K. Yadav, L. D. S. Yadav, Green Chem. 2016;18:4240;
(f) A. K. Yadav, L. D. S. Yadav, Green Chem. 2015;
17:3515;
Addition/cyclization cascade of
thiocyanate and anilines.
Utilization of atmospheric oxygen as
an oxidant.
(g) A. K. Yadav, L. D. S. Yadav, Tetrahedron Lett. 2015;
56:6696;
(h) R. Kapoorr, S. Tripathi, S. N. Singh, L. D. S. Yadav,
Synlett. 2015; 26: 1201.