R. M. J. Liskamp, R. J. Pieters et al.
SHORT COMMUNICATION
gave 8 in 99% yield. Yield for the other anomeric glycosyl azides:
1 (78%), 4 (91%) and 9 (96%).
in the reactions with unprotected glycosyl azide 6 or fluo-
rescent-labeled 15 containing the first generation dendrimer
reflects the product purification rather than the coupling
efficiency. All coupling products were fully characterized by
1H, 13C, 2D-COSY NMR and MS.
Copper-Catalyzed [2+3] Cycloadditions. General Procedure: The
dendrimer (30–100 μmol) and the azido carbohydrate (1.5 equiv.
per alkyne group), CuSO4 (30 mol-%), and sodium ascorbate
(60 mol-%), were dissolved in DMF (1–1.5 mL) containing several
drops of H2O. The solution was exposed to microwave irradiation
at 80 °C for 20 min, then concentrated and purified on a silica col-
umn eluting first with CH2Cl2/EtOAc (6:1) to recover the excess of
starting azido carbohydrate followed by elution with CH2Cl2/
MeOH (6:1) to obtain the triazole-linked glycodendrimer in the
indicated yields. For mass and NMR spectra of the produced com-
pounds see Supporting Information.
Table 1. Microwave-assisted copper(i)-mediated synthesis of tri-
azole glycodendrimers under microwave conditions.[a]
Entry Azide
Dendrimer
Product
Valency
Yield[b]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1
1
1
1
2
3
3
4
6
6
6
7
8
9
9
9
9
9
5
10
11
13
14
15
10
13
10
10
11
13
12
10
10
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
2
3
2
4
2
2
2
2
2
3
2
2
2
2
3
4
4
2
9
93
95
97
98
68
95
97
97
73
80
94
95
95
92
91
98
91
86
97
Acknowledgments
This study has been carried out with financial support from the
Commission of the European Communities, specific RTD program
Quality of Life and Management of Living Resources, QLK2-CT-
2002-01852, POLYCARB. We thank Dr. Johan Kemmink (Depart-
ment of Medicinal Chemistry, Utrecht University) for recording
500 MHz NMR spectra and Ronald D. van Ooijen (Department
of Biomolecular Mass Spectrometry, Utrecht University) for re-
cording high-resolution mass spectra.
[1] a) B. G. Davis, J. Chem. Soc., Perkin Trans. 1 1999, 3215–3237.
[2] S. J. Williams, G. J. Davies, Trends Biotechnol. 2001, 19, 356–
362.
[3] V. Y. Dudkin, M. Orlova, X. Geng, M. Mandal, W. C. Olson,
S. J. Danishefsky, J. Am. Chem. Soc. 2004, 126, 9560–9562.
[4] a) M. C. Bryan, F. Fazio, H.-K. Lee, C.-Y. Huang, A. Chang,
M. D. Best, D. A. Calarese, O. Blixt, J. C. Paulson, D. Burton,
I. A. Wilson, C.-H. Wong, J. Am. Chem. Soc. 2004, 126, 8640–
8641; b) S. Park, M. Lee, S. Pyo, I. Shin, J. Am. Chem. Soc.
2004, 126, 4812–4819.
[5] L. Ballell, K. J. Alink, M. Slijper, C. Versluis, R. M. J. Liskamp,
R. J. Pieters, ChemBioChem 2005, 6, 291 –295.
[6] a) M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem.
Int. Ed. 1998, 37, 2754–2794; b) R. T. Lee, Y. C. Lee, Glycocon-
jugate J. 2000, 17, 543–551.
[7] a) T. K. Lindhorst, M. Dubber, U. Krallmann-Wenzel, S.
Ehlers, Eur. J. Org. Chem. 2000, 2027–2034; b) N. Nagahori,
R. T. Lee, S.-I. Nishimura, D. Pagé, R. Roy, Y. C. Lee, ChemBi-
oChem 2002, 3, 836–844; c) R. Autar, A. S. Khan, M. Schad,
J. Hacker, R. M. J. Liskamp, R. J. Pieters, ChemBioChem 2003,
4, 1317–1325; d) J. A. F. Joosten, V. Loimaranta, C. C. M. Ap-
peldoorn, S. Haataja, F. Ait El Maate, R. M. J. Liskamp, J.
Finne, R. J. Pieters, J. Med. Chem. 2004, 47, 6499–6508.
[8] a) E. Fan, Z. Zhang, W. E. Minke, Z. Hou, C. L. M. J. Verlinde,
W. G. J. Hol, J. Am. Chem. Soc. 2000, 122, 2663–2664; b) P. I.
Kitov, J. M. Sadowska, G. Mulvey, G. D. Armstrong, H. Ling,
N. S. Pannu, R. J. Read, D. R. Bundle, Nature 2000, 403, 669–
672; c) D. Arosio, I. Vrasidas, P. Valentini, R. M. J. Liskamp,
R. J. Pieters, A. Bernardi, Org. Biomol. Chem. 2004, 2, 2113–
2124.
[9] a) S. André, R. J. Pieters, I. Vrasidas, H. Kaltner, I. Kuwabara,
F.-T. Liu, R. M. J. Liskamp, H.-J. Gabius, ChemBioChem 2001,
2, 822–830; b) I. Vrasidas, S. André, P. Valentini, C. Böck, M.
Lensch, H. Kaltner, R. M. J. Liskamp, H.-J. Gabius, R. J. Piet-
ers, Org. Biomol. Chem. 2003, 1, 803–810.
[10] a) V. Wittmann, S. Seeberger, Angew. Chem. Int. Ed. 2004, 43,
900–903; b) E. K. Woller, E. D. Walter, J. R. Morgan, D. J. Sin-
gel, M. J. Cloninger, J. Am. Chem. Soc. 2003, 125, 8820–8826.
[11] a) P. R. Ashton, S. E. Boyd, C. L. Brown, N. Jayaraman, J. F.
Stoddart, Angew. Chem. Int. Ed. Engl. 1997, 36, 732–735; b)
R. Roy, M.-G. Baek, K. Rittenhouse-Olson, J. Am. Chem. Soc.
[a] Reagents and conditions: alkyne-containing dendrimer
(1 equiv.), azido carbohydrate (1.5 equiv. per alkyne), CuSO4
(0.15 equiv. per alkyne), sodium ascorbate (0.3 equiv. per alkyne),
DMF/H2O, microwaves, 80 °C, 20 min. [b] Yield of isolated pro-
duct.
Conclusions
In conclusion, the use of straightforward microwave-as-
sisted procedures allowed the rapid preparation of azido
carbohydrates. These were applied in a general microwave-
enhanced regioselective CuI-catalyzed [3+2] cycloaddition
reaction with different kinds of alkyne-bearing dendrimers,
which led to triazole glycodendrimers, up to the nonavalent
level, in high yields. Furthermore, two glycoconjugates con-
taining a fluorescent label were prepared, important for the
biological evaluation of these compounds.
Experimental Section
General Remarks: Reactions were carried out in a dedicated micro-
wave oven, i.e. the Biotage Initiator. The microwave power was
limited by the temperature control once the desired temperature
was reached. Sealed vessels of 2 mL and 20 mL were used.
Synthesis of Anomeric Glycosyl Azides. Typical Procedure (Cellobi-
ose Example): A solution of peracetylated cellobiose (500 mg), HBr
(5 equiv.) and acetic anhydride (4 equiv.) in dry CH2Cl2 (10 mL)
was exposed to microwave irradiation under sealed-vessel condi-
tions at 80 °C for 20 min, after which it was concentrated. The
residue was dissolved in dry THF (10 mL) and TMSN3 (5 equiv.),
and TBAF (5 equiv.) were added. The mixture was exposed to mi-
crowave irradiation at 80 °C for 15 min, then concentrated and
purified on a silica column. Elution with toluene/EtOAc (30:1–5:1),
3184
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 3182–3185