Table 1 FET and PSC performances of PCDTTz and PCDTBT
Notes and references
ma/
JSC
/
b
1 H.-Y. Chen, J. H. Hou, S. Q. Zhang, Y. Liang, G. W. Yang,
Y. Yang, L. P. Yu, Y. Wu and G. Li, Nat. Photonics, 2009, 3, 649.
2 J.-H. Park, D. S. Chung, D. H. Lee, H. Kong, I. H. Jung,
M.-J. Park, N. S. Cho, C. E. Park and H.-K. Shim, Chem.
Commun., 2010, 46, 1863.
3 S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon,
D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics,
2009, 3, 297.
Polymer cm2 Vꢁ1 sꢁ1 Ion/Ioff VOCb/V mA cmꢁ2 FFb Zb (%)
a
PCDTTz 3.8 ꢀ 10ꢁ3
105
105
0.86
0.82
9.15
8.84
0.62 4.88
0.46 3.34
PCDTBT 1.7 ꢀ 10ꢁ4
a
The field-effect carrier mobilities and on/off current ratios of the
polymers were investigated by fabricating FETs with bottom-contact
b
geometry using Au electrodes. The device was fabricated with the
structure of ITO/PEDOT:PSS/polymer:PC71BM/LiF/Al.
4 F. C. Krebs, J. Fyenbo and M. Jorgensen, J. Mater. Chem., 2010,
20, 8994.
5 H. Kim, W.-W. So and S.-J. Moon, Sol. Energy Mater. Sol. Cells,
2007, 91, 581.
6 F. C. Krebs, T. Tromholt and M. Jorgensen, Nanoscale, 2010, 2,
873.
7 F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrom and
M. S. Pedersen, Energy Environ. Sci., 2010, 3, 512.
8 J.-Y. Jung, Z. Guo, S. -W. Jee, H.-D. Um, K.-T. Park and
J.-H. Lee, Opt. Express, 2010, 18, A286.
9 G. Zhang, Y. Fu, Q. Zhang and Z. Xie, Chem. Commun., 2010, 46,
4997.
10 G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich,
C. Waldauf and C. J. Brabec, Adv. Mater., 2008, 20, 579.
11 J. F. Morin and M. Leclerc, Macromolecules, 2002, 35, 8413.
12 S. K. Lee, N. S. Cho, J. H. Kwak, S. K. Lim, H.-K.
Shim, D.-H. Hwang and C. J. Brabec, Thin Solid Films, 2006,
511, 157.
and PCDTTz:PC71BM materials. Convolution of the spectral
response with the photon flux of the AM 1.5 G spectrum
(100 mW cmꢁ2) provided an estimate for the JSC under
irradiation. The calculated JSC for PCDTTz devices was
8.11 mA cmꢁ2. Due to the mismatch between the EQE and
the photon flux under AM 1.5 G illumination, an approximate
mismatch of 11% was present between the convolution and
solar simulator data.
To the best of our knowledge, a PCE as high as 4.88% has
not been reported for polymer solar cells based on polymers
with a band gap above 2.0 eV.
In summary, a highly processable, new semiconducting
polymer, PCDTTz, based on alternating carbazole and
thiazolothiazole units was synthesized. Polymer solar cells
prepared from blends of this polymer with fullerene
derivatives exhibited high solar energy conversion efficiencies
of 4.88% without special treatments. Considering the field-
effect carrier mobility and photovoltaic properties of PCDTTz,
this polymer exhibits promising potential as a candidate for
next generation solar cell materials. Moreover, this polymer
constitutes a requisite large band gap material for tandem
construction of PSCs that absorb well over a broad visible
spectrum when combined with narrow band gap polymers with
a band gap of less than 1.74 eV. Considering that the PCE of
PSCs based on PCDTBT increased from 3.6% to 6.1% when
titanium oxide was used as the optical spacer and hole blocking
layer,3 ongoing investigations into PCDTTz are predicted to
deliver even better performance enhancements.
13 Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li and L. Yu,
J. Am. Chem. Soc., 2009, 131, 56.
14 I. H. Jung, Y. K. Jung, J. Lee, J.-H. Park, H. Y. Woo, J.-I. Lee,
H. Y. Chu and H.-K. Shim, J. Polym. Sci., Part A: Polym. Chem.,
2008, 46, 7148.
15 I. Osaka, R. Zhang, G. Sauve, D. Smilgies, T. Kowalewski and
R. D. McCullough, J. Am. Chem. Soc., 2009, 131, 2521.
16 I. Osaka, G. Sauve, R. Zhang, T. Kowalewski and
R. D. McCullough, Adv. Mater., 2007, 19, 4160.
17 H.-Y. Chen, J. Hou, A. E. Hayden, H. Yang, K. N. Houk and
Y. Yang, Adv. Mater., 2010, 22, 371.
18 M. M. Wienk, M. Turbiez, J. Gilot and R. A. J. Janssen, Adv.
Mater., 2008, 20, 2556.
19 J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen,
M. Dante and A. J. Heeger, Science, 2007, 317, 222.
20 S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li
and Y. Yang, Adv. Mater., 2010, 22, 380.
21 N. Blouin, A. Michaud and M. Leclerc, Adv. Mater., 2007, 19,
2295.
22 A. Gadisa, W. Mammo, L. M. Andersson, S. Admassie, F. Zhang,
M. R. Andersson and O. Inganas, Adv. Funct. Mater., 2007, 17,
3836.
¨
This study was supported by a grant (M2009010025) from
the Fundamental R&D Program for Core Technology of
Materials funded by the Ministry of Knowledge Economy
(MKE) and by the Converging Research Center Program
through the Ministry of Education, Science and Technology
(2010K000970), Republic of Korea.
23 S. K. Lee, D.-H. Hwang, B.-J. Jung, N. S. Cho, J. Lee, J.-D. Lee
and H.-K. Shim, Adv. Funct. Mater., 2005, 15, 1647.
24 S. K. Lee, N. S. Cho, S. Cho, S.-J. Moon, J. K. Lee and
G. C. Bazan, J. Polym. Sci., Part A: Polym. Chem., 2009, 47,
6873.
25 L.-M. Chen, Z. Hong, G. Li and Y. Yang, Adv. Mater., 2009, 21,
1434.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 1791–1793 1793