Organic Letters
Letter
M.; Hartmann, E.; Kuegel, W.; Parisienne-La Salle, J.-C.; Batsanov, A.
S.; Marder, T. B.; Snieckus, V. Chem. - Eur. J. 2010, 16, 8155.
(5) For recent reviews of functional-group-directed borylation, see:
(a) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43,
3229. (b) Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang, L.; Liu, L.; Jiao,
J.; Li, P. Tetrahedron 2017, 73, 7123.
(6) For an application of remote borylation towards total synthesis,
see: Feng, Y.; Holte, D.; Zoller, J.; Umemiya, S.; Simke, L. R.; Baran, P.
S. J. Am. Chem. Soc. 2015, 137, 10160.
Finally, further application of this method for 4-fold C−H
activation/borylation followed by arylation was tested sequen-
tially with (R)-BINOL. Thus, (R)-BINOL was subjected under
two different sets of conditions (for example, ortho and remote),
which afforded the complex tetra-arylated BINOL21 in good
yield (Scheme 3). This example showcases the efficiency of this
method for the development of new ligand and catalyst design in
organocatalysis for asymmetric synthesis.
In conclusion, a double-fold ortho and remote C−H bond
activation and borylation of BINOL has been developed. While
ortho borylation is solely controlled by an electrostatically
directed mechanism, remote borylation is controlled by a steric
effect. The developed strategy was successfully combined with
cross-coupling as one-pot way for the rapid synthesis of a variety
of useful chiral 3,3′-disubstituted and 6,6′-disubstituted BINOL
derivatives, which overcomes the previous shortcomings.
(7) For noncovalent interaction in remote borylation, see: (a) Bisht,
R.; Chattopadhyay, B. J. Am. Chem. Soc. 2016, 138, 84. (b) Davis, H. J.;
Mihai, M. T.; Phipps, R. J. J. Am. Chem. Soc. 2016, 138, 12759.
(c) Davis, H. J.; Genov, G. R.; Phipps, R. J. Angew. Chem., Int. Ed. 2017,
56, 13351. (d) Li, H. L.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int. Ed.
2017, 56, 1495. (e) Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay,
B. J. Am. Chem. Soc. 2017, 139, 7745. (f) Bisht, R.; Hoque, M. E.;
Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 15762. (g) Haldar,
C.; Hoque, E.; Bisht, R.; Chattopadhyay, B. Tetrahedron Lett. 2018, 59,
1269. (h) Davis, H. J.; Phipps, R. J. Chem. Sci. 2017, 8, 864.
(8) For selected reviews, see: (a) Chen, Y.; Yekta, S.; Yudin, A. K.
Chem. Rev. 2003, 103, 3155. (b) Brunel, J. M. Chem. Rev. 2005, 105,
857. (c) Brunel, J. M. Chem. Rev. 2007, 107, PR1.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(9) For selected reviews on chiral phosphoric acid, see: (a) Akiyama,
T. Chem. Rev. 2007, 107, 5744. (b) Terada, M. Chem. Commun. 2008,
4097. (c) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(d) Rueping, M.; Kuenkel, A.; Atodiresei, I. Chem. Soc. Rev. 2011, 40,
1
Experimental details, spectral data, copies of H and
13CNMR spectra, and HPLC charts (PDF)
̌
́
4539. (e) Coric, I.; Vellalath, S.; Muller, S.; Cheng, X.; List, B. Top.
̈
Organomet. Chem. 2012, 44, 165. (f) Parmar, D.; Sugiono, E.; Raja, S.;
Rueping, M. Chem. Rev. 2014, 114, 9047.
AUTHOR INFORMATION
Corresponding Author
■
(10) (a) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128,
9626. (b) Rueping, M.; Nachtsheim, B. J.; Koenigs, R. M.; Ieawsuwan,
W. Chem. - Eur. J. 2010, 16, 13116. (c) Berkessel, A.; Christ, P.;
ORCID
̈
Leconte, N.; Neudcŗ fl, J.-M.; Schafer, M. Eur. J. Org. Chem. 2010, 2010,
5165. (d) Treskow, M.; Neudorfl, J.; Giernoth, R. Eur. J. Org. Chem.
2009, 2009, 3693. (e) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed.
2013, 52, 4312. (f) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107,
5656.
Author Contributions
§R.B. and J.C. contributed equally.
(11) Cox, P. J.; Wang, W.; Snieckus, V. Tetrahedron Lett. 1992, 33,
2253.
(12) Simonsen, K. B.; Gothelf, K. V.; Jørgensen, K. A. J. Org. Chem.
1998, 63, 7536.
(13) Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am.
Chem. Soc. 2010, 132, 468.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(14) Ahmed, I.; Clark, D. A. Org. Lett. 2014, 16, 4332.
(15) Yang, J.-F.; Wang, R.-H.; Wang, Y.-X.; Yao, W.-W.; Liu, Q.-S.; Ye,
M. Angew. Chem., Int. Ed. 2016, 55, 14116.
(16) For early reports, see: (a) Hocke, H.; Uozumi, Y. Tetrahedron
2003, 59, 619. (b) Cai, D.; Larsen, R. D.; Reider, P. Tetrahedron Lett.
2002, 43, 4055. For a recent report, see: (c) Narute, S.; Parnes, R.;
Toste, F. D.; Pappo, D. J. Am. Chem. Soc. 2016, 138, 16553.
(17) Chattopadhyay, B.; Dannatt, J. E.; Andujar-De Sanctis, I. L.;
Gore, K. A.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. J. Am. Chem.
Soc. 2017, 139, 7864.
(18) Theveau, L.; Bellini, R.; Dydio, P.; Szabo, Z.; van der Werf, A.;
Sander, R. A.; Reek, J. N. H.; Moberg, C. Organometallics 2016, 35,
1956.
(19) Chiral BINOL and H8−BINOL-based catalysts both are highly
important; H8−BINOL possesses many additional features over simple
BINOL such as, solubility, acidities, and racemization profiles as well as
geometries and bite angles. For selected reviews, see: (a) Akiyama, T.
Chem. Rev. 2007, 107, 5744. (b) Doyle, A. G.; Jacobsen, E. N. Chem.
Rev. 2007, 107, 5713.
B.C. thanks DST-SERB, New Delhi, for a DST-SERB CRG
grant (CRG/2018/000133) and a Ramanujan Grant (SB/S2/
RJN-45/2013). R.B. thanks CSIR, New Delhi, for the SRF, and
J.C. thanks UGC for the SRF. We are thankful to the teams at the
NMR, HRMS and HPLC facilities of CBMR. We thank the
Director, CBMR, for research facilities.
REFERENCES
■
(1) For selected reviews, see: (a) Díaz-Requejo, M. M.; Perez, P. J.
Chem. Rev. 2008, 108, 3379. (b) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147. (c) Li, J.; De Sarkar, S.; Ackermann, L. Top.
Organomet. Chem. 2015, 55, 217. (d) Hartwig, J. F. J. Am. Chem. Soc.
2016, 138, 2. (e) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-
Delord, J. Chem. Soc. Rev. 2016, 45, 2900. (f) Yang, Y.-F.; Hong, X.; Yu,
J.-Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853. (g) Dong, Z.; Ren, Z.;
Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333.
(h) Mihai, M. T.; Genov, G. R.; Phipps, R. Chem. Soc. Rev. 2018, 47,
149.
(20) For interconversion of BINOL to H8−BINOL, see: Tay, J.-H.;
Arguelles, A. J.; Nagorny, P. Org. Lett. 2015, 17, 3774.
(21) For importance of this framework, see: Zheng, M.; Liu, Y.; Wang,
C.; Liu, S.; Lin, W. Chem. Sci. 2012, 3, 2623.
(2) (a) Hall, D. G. Boronic Acids; Wiley-VCH: Weinheim, 2005.
(b) Crudden, C. M.; Glasspoole, B. W.; Lata, C. Chem. Commun. 2009,
44, 6704.
(3) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2010, 110, 890−931.
(4) (a) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew.
Chem., Int. Ed. 2004, 43, 2206. (b) Hurst, T. E.; Macklin, T. K.; Becker,
E
Org. Lett. XXXX, XXX, XXX−XXX