Organic Letters
Letter
Pd(PPh ) in the absence of TfOH was found to be ineffective,
which suggests that TfOH is also required for the hydroxylative
benzannulation step.
3
4
Other Authors
According to these experimental results and the previous
12
reports, a plausible reaction mechanism is proposed. As
Muppidi Subbarao − CSIR-Indian Institute of Chemical
Technology, Hyderabad, India, and Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad, India
Puppala Sathish − CSIR-Indian Institute of Chemical
Technology, Hyderabad, India, and Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad, India
Dattahari H. Kolgave − CSIR-Indian Institute of
Chemical Technology, Hyderabad, India, and Academy of
Scientific and Innovative Research (AcSIR), Ghaziabad,
shown in Scheme 7, initially, 1a undergoes the propargylation
Ramachandra Reddy Donthiri − CSIR-Indian Institute
of Chemical Technology, Hyderabad, India
Notes
The authors declare no competing financial interest.
with 2a in the presence of TfOH to give intermediate A. In the
presence of in-situ-generated Pd(II), intermediate A undergoes
hydropalladation to produce vinylpalladium complex B, which
upon β-elimination transforms to allene C. The hydration of C
in the presence of acid is expected to give D, and subsequent
cyclization followed by dehydration leads to the desired
product 3a. Nonetheless, the precise mechanism of the
reaction remained indistinct.
In conclusion, the synthesis of 3-hydroxycarbazoles by one-
pot consecutive reactions of propargylic alcohols with indole-2-
carbonyls has been established, involving palladium-catalyzed
hydroxylative benzannulation as the key step. The developed
protocol provides access to important diversely substituted 3-
hydroxycarbazoles in good to excellent yield. The method was
further extended to use 2,4-diyn-1-ols in the reaction, which
favored another cyclization to obtain the diannulated products,
furanocarbazoles. A broad substrate scope and mild reaction
conditions are the attractive features that make the present
method valuable.
ACKNOWLEDGMENTS
C.R.R., M.S., and R.R.D. thank the Council of Scientific and
Industrial Research (CSIR), New Delhi for research funding
■
(
Fast Track Translational Project) and fellowships. P.S. and
D.H.K. thank the University of Grants Commission (UGC),
New Delhi for the fellowship (CSIR-IICT Communication
No. IICT/Pubs./2019/424).
REFERENCES
■
(1) For selected reviews, see: (a) Aggarwal, T.; Sushmita; Verma, A.
K. Org. Biomol. Chem. 2019, 17, 8330. (b) Pieper, A. A.; McKnight, S.
L.; Ready, J. M. Chem. Soc. Rev. 2014, 43, 6716. (c) Schmidt, A. W.;
Reddy, K. R.; Knolker, H.-J. Chem. Rev. 2012, 112, 3193. (d) Knolker,
H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
(2) For representative references, see: (a) Caruso, A.; Ceramella, J.;
Iacopetta, D.; Saturnino, C.; Mauro, M. V.; Bruno, R.; Aquaro, R. S.;
Sinicropi, M. S. Molecules 2019, 24, 1912. (b) Singh, S.; Samineni, R.;
Pabbaraja, S.; Mehta, G. Org. Lett. 2019, 21, 3372. (c) Lin, S.; He, X.;
Meng, J.; Gu, H.; Zhang, P.; Wu, J. Eur. J. Org. Chem. 2017, 2017,
ASSOCIATED CONTENT
sı Supporting Information
4
43. (d) Alt, I. T.; Plietker, B. Angew. Chem., Int. Ed. 2016, 55, 1519.
(e) Gao, H.; Xu, Q. L.; Yousufuddin, M.; Ess, D. H.; Kurti, L. Angew.
Chem., Int. Ed. 2014, 53, 2701. (f) Hesse, R.; Kataeva, O.; Schmidt, A.
W.; Knolker, H.-J. Chem. - Eur. J. 2014, 20, 9504. (g) Kumar, V. P.;
Gruner, K. K.; Kataeva, O.; Knolker, H.-J. Angew. Chem., Int. Ed. 2013,
52, 11073.
■
*
̈
̈
̈
1
13
H and C NMR spectra of new compounds (PDF)
(3) (a) Tao, Y.; Yang, C.; Qin, J. Chem. Soc. Rev. 2011, 40, 2943.
b) Li, J.; Grimsdale, A. Chem. Soc. Rev. 2010, 39, 2399. (c) Organic
(
Light Emitting Devices: Synthesis, Properties, and Applications; Mu
K., Scherf, U., Eds.; Wiley-VCH: Weinheim, Germany, 2006.
4) (a) Kotoda, N.; Shinya, K.; Furihata, K.; Hayakawa, Y.; Seto, H.
̈
llen,
CCDC 1971748 contains the supplementary crystallographic
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(
J. Antibiot. 1997, 50, 770. (b) Mo, C.-J.; Shin-Ya, K.; Furihata, K.;
Furihata, K.; Shimazu, A.; Hayakawa, Y.; Seto, H. J. Antibiot. 1990, 43,
1
1
337. (c) Kumar, V.; Reisch, J.; Wickramasinghe, A. Aust. J. Chem.
989, 42, 1375. (d) Kato, S.; Kawai, H.; Kawasaki, T.; Toda, Y.;
Urata, T.; Hayakawa, Y. J. Antibiot. 1989, 42, 1879. (e) Mukherjee, S.;
Mukherjee, M.; Ganguly, S. N. Phytochemistry 1983, 22, 1064.
(5) (a) Mandal, T.; Chakraborti, G.; Karmakar, S.; Dash. Org. Lett.
■
2018, 20, 4759. (b) Banerjee, A.; Sahu, S.; Maji, M. S. Adv. Synth.
Catal. 2017, 359, 1860. (c) Hesse, R.; Schmidt, A. W.; Knolker, H. J.
Tetrahedron 2015, 71, 3485. (d) Hieda, Y.; Choshi, T.; Kishida, S.;
Fujioka, H.; Hibino, S. Tetrahedron Lett. 2010, 51, 3593. (e) Alayrac,
C.; Schollmeyer, D.; Witulski, B. Chem. Commun. 2009, 12, 1464.
Chada Raji Reddy − CSIR-Indian Institute of Chemical
Technology, Hyderabad, India, and Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad, India;
D
Org. Lett. XXXX, XXX, XXX−XXX